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Abstract

We present a method for automatic inference of conditions on the initial states of a program
that guarantee that the safety assertions in the program are not violated. Constrained
Horn clauses (CHCs) are used to model the program and assertions in a uniform way,
and we use standard abstract interpretations to derive an over-approximation of the set of
unsafe initial states. The precondition then is the constraint satisfied by the complement
of that set under-approximating the set of safe initial states. This idea is not new, but
previous attempts to exploit it have suffered from loss of precision. Here we develop an
iterative refinement algorithm for non-linear CHCs and show that it produces much more
precise, and in some cases optimal, approximations of the safety conditions, and can
scale to larger programs. The refinement algorithm uses partial evaluation and a form of
counterexample-guided abstraction refinement to focus on the relevant program states.
Disjunctive constraints, which are essential to achieve good precision, are generated in a
controlled way by program transformations that perform polyvariant specialisation. The
algorithm is implemented and tested on a benchmark suite of programs from the literature
in precondition inference and software verification competitions.

KEYWORDS: Precondition inference, backwards analysis, abstract interpretation, refine-
ment, program specialisation, program transformation.

1 Introduction

Given a program with properties required to hold at specific program points, pre-

condition analysis derives the conditions on the initial states ensuring that the

properties hold. This has important applications in program verification, symbolic

execution, program understanding and debugging. While forward abstract inter-

pretation approximates the set of reachable states of a program, backward abstract

interpretations approximates the set of states that can reach some target state. Both

forward and backward analyses may produce over- or under-approximations, and
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forward and backward analysis may profitably be combined (Cousot and Cousot

1992; Cousot et al. 2011; Bakhirkin and Monniaux 2017).

Most approaches that apply backward analysis, possibly in conjunction with

forward analysis, use over-approximations, and as a result derive necessary pre-

conditions. Less attention has been given to under-approximating backwards anal-

yses, with the goal of finding sufficient pre-conditions. However, it is natural to try

to derive guarantees of safe behaviour of a program. Often we would like to know

which initial states must be safe, in the sense that no computation starting from

such a state can possibly reach a specified error state, that is, we desire to find

(non-trivial) sufficient conditions for safety.

If analysis uses an abstract domain which is complemented, duality enables suf-

ficient conditions to be derived from necessary conditions and vice versa. However,

complemented abstract domains are very rare, and approximation of a complement

tends to introduce considerable lack of precision. The under-approximating back-

ward abstract interpretation of Howe et al. (2004) utilises the fact that the abstract

domain Pos is pseudo-complemented (Marriott and Søndergaard 1993), but pseudo-

complementation too is very rare. Moy (2008) presents a method for deriving suffi-

cient preconditions (for use with a theorem prover), employing weakest-precondition

reasoning and forward abstract interpretation to attempt to generalise conditions

at loop heads. Bakhirkin et al. (2014) observe that there may be an advantage in

generalising an abstract complement operation to (abstract) logical subtraction, as

this may improve opportunities to find a tighter approximation of a set of states.

Miné (2012a) infers sufficient conditions for safety, not by instantiating a generic

mechanism for complementation, but by designing all required purpose-built back-

ward transfer functions. He does this for three numeric abstract domains: intervals,

octagons and convex polyhedra—a substantial effort, as the purpose-built opera-

tions, including widening, can be rather intricate.

We share Miné’s goal but use program transformation and over-approximating

abstract interpretation over a Horn clause program representation. This allows us

to apply a range of established tools and techniques beyond abstract interpretation,

including query-answer transformation, partial evaluation and abstraction refine-

ment. We offer an iterative approach that successively specialises a program and

also incorporates counterexample-based refinement (CEGAR) (Clarke et al. 2003).

The approach of iteratively specialising a program represented as Horn clauses has

also been pursued by De Angelis et al. (2014) in order to verify program properties.

Their techniques also incorporate forward and backward propagation of constraints,

but rather than explicitly using abstract interpretation, their specialisation algo-

rithm involves a special constraint generalisation method.

We shall use the example in Figure 1 to demonstrate our approach. The left side

shows a C program fragment, and the right its constrained Horn clause (CHC) repre-

sentation. Given an imperative program (with assertions), its translation to CHCs

can be obtained using various approaches (Peralta et al. 1998; Grebenshchikov

et al. 2012; Gurfinkel et al. 2015; De Angelis et al. 2017). The predicates capture

the reachable states of the computation and a predicate false represents an error

state. Henceforth whenever we refer to a program, we refer to its CHC version.
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int a, b;
if (a ≤ 100)
a = 100− a;

else a = a− 100;
while (a ≥ 1)
{a = a− 1; b = b− 2; }

assert(b 6= 0);

c1. init(A, B)← true.
c2. if(A, B)← init(C, B), C ≤ 100, A = 100− C.
c3. if(A, B)← init(C, B), C ≥ 101, A = C− 100.
c4. while(A, B)← if(A, B).
c5. while(A, B)← C ≥ 1, A = C− 1, B = D− 2,

while(C, D).
c6. false← A ≤ 0, while(A, B), B = 0.

Fig. 1: Running example: (left) original program, (right) translation to CHCs

For the given program, we want to ensure that b is non-zero after the loop. The

goal is to derive initial conditions on a and b, sufficient to ensure that the assertion is

never violated. We note that the assertion will not be violated provided the following

three conditions are met: (i) if a = 100 then b 6= 0, (ii) if a < 100 then 2a 6= 200− b
and (iii) if a > 100 then 2a 6= 200 + b. The conjunction of these three conditions, or

equivalently b 6= |2a−200|, ensures that the assertion is never violated. Automating

the required reasoning is challenging because: (i) the desired result is a disjunctive

constraint over expressions that need an expressive domain; (ii) the disjuncts cannot

be represented as intervals, octagons or difference bound matrices (Miné 2006);

(iii) information need to be propagated forwards and backwards because we lose

information on b and a in the forward and in the backward direction respectively.

In what follows, we show how to derive the conditions automatically.

The key contribution of this paper is a framework for deriving sufficient precondi-

tions without a need to calculate weakest preconditions or rely on abstract domains

with special properties or intricate transfer functions. This is achieved through a

combination of program transformation and abstract interpretation, with the de-

rived preconditions being successively refined through iterated transformation.

After Section 2’s preliminaries, we discuss, in Section 3.1, the required trans-

formation techniques. Section 3.2 gives iterative refinement algorithms that derive

successively better (weaker) preconditions. Section 4 is an account of experimental

evaluation, demonstrating practical feasibility of the technique. Section 5 concludes.

2 Preliminaries

A constrained Horn clause (CHC) is a first-order predicate logic formula of the

form ∀x0 . . .xk(p1(x1)∧ . . .∧ pk(xk)∧φ→ p0(x0)), where φ is a finite conjunction

of constraints with respect to some constraint theory T, x0, . . . ,xk are (possibly

empty) tuples of variables, p0, . . . , pk are predicate symbols, p0(x0) is the head of

the clause and p1(x1) ∧ . . . ∧ pk(xk) ∧ φ is the body. Quantification over tuples

of variables denotes the obvious quantification over the variables. Following the

conventions of Constraint Logic Programming (CLP), such a clause is written as

p0(x0)← φ, p1(x1), . . . , pk(xk). For concrete examples of CHCs we use Prolog-like

syntax and typewriter font, and capital letters for variable names.

An atomic formula, or simply atom, is a formula p(x) where p is a predicate

symbol and x a tuple of arguments. Integrity constraints are a special kind of
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clause whose head is the predicate false. A constrained fact is a clause of the form

p0(x0)← φ. A set of CHCs is also called a program.

Figure 1 (right) contains an example of a set of constrained Horn clauses. The

first five clauses define the behaviour of the program in Figure 1 (left) and the last

clause represents a property of the program (that the variable B is non-zero after

executing the program) expressed as an integrity constraint.

CHC semantics. The semantics of CHCs is obtained using standard concepts from

predicate logic semantics. An interpretation assigns to each predicate a relation over

the domain of the constraint theory T. The predicate false is always interpreted

as false. We assume that T is equipped with a decision procedure and a projection

operator, and that it is closed under negation. We use notation φ|V to represent

the constraint formulae φ projected onto variables V .

An interpretation satisfies a set of formulas if each formula in the set evaluates

to true in the interpretation in the standard way. In particular, a model of a set of

CHCs is an interpretation in which each clause evaluates to true. A set of CHCs

P is consistent if and only if it has a model. Otherwise it is inconsistent. A set of

CHCs has a minimal model, which is the intersection of all its models.

When modelling safety properties of systems using CHCs, the consistency of a

set of CHCs corresponds to safety of the system. Thus we also refer to CHCs as

being safe or unsafe when they are consistent or inconsistent respectively.

AND-trees and trace trees. Derivations for CHCs are represented by AND-trees.

The following definitions of derivations and trace trees are adapted from Gallagher

and Lafave (1996).

An AND-tree for a set of CHCs is a tree whose nodes are labelled as follows.

1. each non-leaf node corresponds to a clause (with variables suitably renamed)

of the form A ← φ,A1, . . . , Ak and is labelled by an atom A, φ, and has

children labelled by A1, . . . , Ak,

2. each leaf node corresponds to a clause of the form A ← φ (with variables

suitably renamed) and is labelled by an atom A and φ, and

3. each node is labelled with the clause identifier of the corresponding clause.

c6: false,
A ≤ 0 ∧ B = 0

c4: while(A,B),
true

c2: if(A,B),
A ≤ 100∧

A = 100− C

c1: if(C,B),
true

Given an AND-tree t, constr(t) represents the conjunction of the

constraints in its node labels. t is feasible if and only constr(t) is

satisfiable over T. We also represent a conjunction of constraints

as a set of constraints, for example, a = 0∧b ≥ 1 as {a = 0, b ≥ 1}.

Definition 1

For an atom p(x) and a set of CHCs P we write P `T p(x) if

there exists a feasible AND-tree with root labelled by p(x).

The soundness and completeness of derivation trees (Jaffar et al.

1998) implies that P is inconsistent if and only if P `T false.

On the right is an AND-tree corresponding to the derivations
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of false using the clauses c6 followed by c4, c2 and c1 from

the program in Figure 1 (right).

Definition 2 (Initial clauses and nodes)

Let P be a set of CHCs, with a distinguished predicate pI in P which we call the

initial predicate. The constrained facts {(pI(x)← θ) | (pI(x)← θ) ∈ P} are called

the initial clauses of P . Let t be an AND-tree for P . A node labelled by a clause

pI(x) ← θ is an initial node of t. We extend the term “initial predicate” and use

the symbol pI to refer also to renamed versions of the initial predicate that arise

during clause transformations.

3 Precondition Inference

This section describes an approach to precondition generation. We limit our at-

tention to sets of clauses for which every AND-tree for false (whether feasible or

infeasible) has at least one initial node. Although it is not decidable for an arbi-

trary set of CHCs P whether every derivation of false uses the initial predicate,

the above condition on AND-trees can be checked syntactically from the predicate

dependency graph for P .

Definition 3 (Safe precondition)

Let P be a set of CHCs. Let φ be a constraint over T, and let P ′ be the set of

clauses obtained from P by replacing the initial clauses {(pI(x)← θi) | 1 ≤ i ≤ k}
by {(pI(x)← θi∧φ) | 1 ≤ i ≤ k}. Then φ is a safe precondition for P if P ′ 6`T false.

Thus a safe precondition is a constraint that, when conjoined with the constraints

on the initial predicate, is sufficient to block derivations of false (given that we

assume clauses for which pI is essential for any derivation of false).

Ideally we would like to find the most general, or weakest safe precondition. This

is not computable so we aim to find a condition that is as weak as possible. The

constraint false is always a safe precondition, albeit an uninteresting one. On the

other hand, if P 6`T false then any constraint, including true, is a safe precondition

for P .

We first show how a safe precondition can be derived from a set of clauses.

Definition 4 (Safe precondition presafe(P ) extracted from a set P of clauses)

Let P be a set of clauses. The safe precondition presafe(P ) is defined as:

presafe(P ) = ¬
∨
{θ | (pI(x)← θ) ∈ P}.

presafe(P ) is clearly a safe precondition for P since for each initial clause pI(x)←
θ the conjunction presafe(P ) ∧ θ is false. This precondition trivially blocks any

derivation of false since we assume that every derivation of false uses an initial

clause. We next show how to construct a sequence P = P0, P1, . . . , Pm where each

element of the sequence is more specialised with respect to derivations of false,

and as a consequence, the constraints in the initial clauses are stronger. Applying

Definition 4 to Pm thus yields a weaker safe precondition for P .
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3.1 Specialisation of Clauses

Definition 5 (Specialisation transformation)

Let P be a set of clauses, and let A be an atom. We write P =⇒A P ′ for a

specialisation transformation of P with respect to A, yielding a set of clauses P ′,

such that the following holds.

• P `T A if and only if P ′ `T A; and

• if pI(x) ← θ ∈ P then there exists an initial clause pI(x) ← φ ∈ P ′, where

|=T φ→ θ.

Note that a specialisation requires not only that derivations of A are preserved, but

also that the initial clauses are preserved and possibly strengthened.

Lemma 1

Let P =⇒false P
′ be a specialisation transformation with respect to false. Then

|=T presafe(P )→ presafe(P ′).

We now present specific transformations for CHCs that satisfy Definition 5. Apply-

ing these transformations enables the derivation of more precise safe preconditions.

These are adapted from established techniques from the literature on CLP and

Horn clause verification and analysis.

3.1.1 Specialising CHCs by Partial Evaluation (PE)

Partial evaluation (Jones et al. 1993) is a program transformation that specialises

a program by restricting its meaning in some way. Here, we consider the partial

evaluation of a set P of CHCs with respect to derivations of false. Informally, we

wish to transform P so that derivations of false are preserved, but not necessarily

other derivations.

The partial evaluation algorithm described here is an instantiation of the “basic

algorithm” for partial evaluation of logic programs in Gallagher (1993). The ba-

sic algorithm is parameterised by an “unfolding rule” unfoldP and an abstraction

operation abstractΨ.

The unfolding rule unfoldP takes a set of constrained facts S, and “partially

evaluates” each element of S, using the following unfolding rule. For each (p(x)←
θ) ∈ S, first construct the set of clauses p(x) ← ψ′, B′ where p(x) ← ψ,B is a

clause in P , and ψ′, B′ is obtained by unfolding ψ∧ θ,B by selecting atoms so long

as they are deterministic (atoms defined by a single clause) and is not a call to an

initial predicate or a recursive predicate, and ψ′ is satisfiable in T. Unfolding with

this rule is guaranteed to terminate; unfoldP returns the set of constrained facts

q(y)← ψ′|y where q(y) is an atom in B′.

Given an initial set S0, the closure of the unfoldP operation is lfp λS. S0 ∪
unfoldP (S). However this is in general infinite. To ensure termination, we compute a

set cfacts(S0) = lfp λS. S0∪abstractΨ(unfoldP (S)), where the abstraction operation

abstractΨ performs property-based abstraction (Grebenshchikov et al. 2012) with
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respect to a finite set of properties Ψ. Ψ is a finite set of constrained facts, and

abstractΨ is defined as follows.

abstractΨ(S) = {repΨ(p(x)← θ) | (p(x)← θ) ∈ S}
where

repΨ(p(x)← θ) = p(x)←
∧
{ψ | (p(x)← ψ) ∈ Ψ,T ∧ θ |= ψ}

The effect of abstractΨ(S) is to generalise each q(y) ← θ ∈ S to q(y) ← ψ, where

ψ is the conjunction of properties in Ψ that are implied by θ. Thus only a finite

number of “versions” of q(y) can be generated, thus ensuring that cfacts(S0) is

finite. (Note: only one version of the predicate false can arise. Constrained facts

for the initial predicates are a special case, and we do not abstract them. This

propagates constraints to the initial clauses faster without affecting termination.)

In the implemented algorithm, the set Ψ contains the following constrained facts,

generated from each clause p(x)← φ, p1(x1), . . . , pn(xn) ∈ P .

• p(x)← φ|x and for each z ∈ x, p(x)← φ|{z}
• for 1 ≤ i ≤ n, pi(xi)← φ|xi

and for each z ∈ xi, pi(xi)← φ|{z}.

The effect of property-based abstraction using this choice for Ψ is to create a finite

number (at most 2|Ψ|) of different versions of a predicate for different call con-

texts and answer constraints. This choice of Ψ has been found to provide a good

compromise between efficiency and precision.

Finally, partial evaluation returns the set of clauses renameunfoldΨ,P (cfacts(S0)),

where renameunfoldΨ,P (S) applies the unfolding rule to each element of S and

renames the predicates in the resulting clauses according to the different versions

produced by abstractΨ. (The single version of false is not renamed.)

Example 1

Consider the partial evaluation of the clauses in Figure 1. The set Ψ consists of the

following nine constrained facts extracted from the clauses as explained above:
if(A, B)← A ≥ 0, if(A, B)← A ≥ 1, init(A, B)← A ≤ 100,

init(A, B)← A ≥ 101, while(A, B)← A ≥ 0, while(A, B)← A ≥ 1,

while(A, B)← A ≤ 0 ∧ B = 0, while(A, B)← A ≤ 0, while(A, B)← B = 0


The partial evaluation of the clauses generate the clauses (with versions renamed)

and (abstracted) constrained facts as shown in Figure 2.

Note that three versions of the init predicate are generated (from the new con-

strained facts generated in steps 3 and 4), each having different constraints. As we

will see in the next section, this allows the extraction of more precise preconditions

for safety of the clauses than could be obtained from the original clauses.

Lemma 2

Partial evaluation using the procedure described above is a specialisation transfor-

mation (Definition 5).

The safe precondition of the partially evaluated clauses is ¬(A ≤ 99 ∨ A ≤ 100 ∨
A ≥ 101), which is equivalent to false (over the integers). Thus partial evaluation
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Clauses New constrained facts
1 false← A ≤ 0, B = 0, while 7(A, B). while(A, B)← A ≤ 0, B = 0.

2

while 7(A, B)← A ≤ 0, B = 0, if 6(A, B).

while 7(A, B)← A = 0, B = 0, C = 1, D = 2,

while 5(C, D).

while(A, B)← A ≥ 1.

if(A, B)← true.

3

while 5(A, B)← A ≥ 1, if 2(A, B).

while 5(A, B)← A ≥ 1, C− A = 1, D− B = 2,

while 5(C, D).

if 6(A, B)← A ≥ 0, A + C = 100, init 4(C, B).

if 6(A, B)← A ≥ 1, C− A = 100, init 3(C, B).

if(A, B)← A ≥ 1.

init(A, B)← A ≥ 101

init(A, B)← A ≤ 100.

4

if 2(A, B)← A ≥ 1, A + C = 100, init 1(C, B).

if 2(A, B)← A ≥ 1, C− A = 100, init 3(C, B).

init 4(A, B)← A ≤ 100.

init 3(A, B)← A ≥ 101.

init(A, B)← A ≤ 99.

5 init 1(A, B)← A ≤ 99. None

Fig. 2: Steps performed during the run of partial evaluation

false← A ≥ 0, p(A,B).
p(A,B)← C ≥ A, p(C,B).
p(A,B)← A = B.

false← A ≥ 0, B ≥ A, A ≥ 0, p(A,B).

p(A,B)← C ≥ A, B ≥ C,C ≥ 0, p(C,B).
p(A,B)← A = B, B ≥ A,A ≥ 0.

Fig. 3: Example program (left) and its constraint specialised version (right)

has not improved the safe precondition compared to the original clauses in Figure 1.

However, the splitting of the initial clauses enables a further specialisation, which

is described next.

3.1.2 Transforming CHCs by Constraint Specialisation (CS)

Constraint specialisation is a transformation that strengthens the constraints in a

set of CHCs, while preserving derivations of a given atom. Consider the following

simple example in Figure 3 (left) that motivates the principles of the transformation.

Assume we wish to preserve derivations of false. The transformation in Figure 3

(right) is a constraint specialisation with respect to false. The strengthened con-

straints are obtained by recursively propagating A ≥ 0 top-down from the goal

false and A = B bottom-up from the constrained fact. An invariant B ≥ A, A ≥ 0

for the derived answers of the recursive predicate p(A,B) in derivations of false is

computed and conjoined to each call to p in the clauses (underlined in the clauses

in Figure 3 (right)).

Definition 6 (Constraint specialisation)
A constraint specialisation of P with respect to a goal A is a transformation in which

each constraint φ in a clause of P is replaced by a constraint ψ where |=T ψ → φ,

such that the resulting set of clauses is a specialisation transformation (Definition

5) of P with respect to A.

In our experiments, the combined top-down and bottom-up propagation of con-

straints illustrated above is achieved by abstract interpretation over the domain
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false← A = 0, B = 0, while 7(A, B). while 7(A, B)← A = 0, B = 0, if 6(A, B).
while 7(A, B)← A = 0, B = 0, C = 1, D = 2, while 5(C, D).
if 6(A, B)← A = 0, B = 0, C = 100, init 4(C, B).
while 5(A, B)← A ≥ 1, 2A− B = 0, if 2(A, B).
while 5(A, B)← A ≥ 1, 2A = B, C− A = 1, D− 2A = 2, while 5(C, D).
if 2(A, B)← A ≥ 1, 2A = B, A + C = 100, init 1(C, B).
if 2(A, B)← A ≥ 1, 2A = B, C− A = 100, init 3(C, B).
init 4(A, B)← A = 100, B = 0. init 3(A, B)← A ≥ 101, 2A− B = 200.
init 1(A, B)← A ≤ 99, 2A + B = 200.

Fig. 4: Constraint specialisation of the partially evaluated clauses in Figure 2

of convex polyhedra applied to a query-answer transformed version of the set of

CHCs. The method is described in detail in Kafle and Gallagher (2017a). The re-

sult of applying constraint specialisation to the output of partial evaluation of the

running example is shown in Figure 4. Note that the second clause for if 6 has

been eliminated, since its constraint was specialised to false.

The safe precondition derived after constraint specialisation from the initial

clauses in Figure 4 is ¬((A = 100 ∧ B = 0) ∨ (A ≤ 99 ∧ 2A + B = 200) ∨ (A ≥
101∧ 2A− B = 200)). This simplifies (over the integers) to B 6= |2A− 200|, which is

the condition obtained in Section 1 and is optimal (weakest).

3.1.3 Transforming CHCs by Trace Elimination (TE)

Let P be a set of CHCs and let t be an AND-tree for P . It is possible to construct a

set of clauses P ′ which preserves the set of AND-trees (modulo predicate renaming)

of P , apart from t. The transformation from P to P ′ is called trace elimination

(of t). We have previously described a technique for trace elimination (Kafle and

Gallagher 2017b), based on the difference operation on finite tree automata. In that

work, trace elimination played the role of a refinement operation, in which infeasible

traces were removed from a set of CHCs in a counterexample-guided verification

algorithm in the CEGAR style (Clarke et al. 2003).

For the purpose of deriving safe preconditions of a set of clauses P , we apply

trace elimination to eliminate both infeasible and feasible AND-trees. AND-trees

for false are obtained naturally from transformations such as partial evaluation or

constraint specialisation. First consider the elimination of an infeasible AND-tree.

Lemma 3

Let P ′ be the result of eliminating an infeasible AND-tree t for false from P . Then

P =⇒false P
′.

Hence in this case we have |=T presafe(P )→ presafe(P ′). However, the elimination

of a feasible AND-tree t for false is not as straightforward. Nevertheless, we can

still use this transformation to derive safe preconditions, by the following lemma.

Lemma 4

Let P ′ be the result of eliminating a feasible AND-tree t for false from P . Let pI(x)

be the atom label of an initial node of t and let θ = constr(t)|x. Then presafe(P ) =

presafe(P ′) ∧ ¬θ.
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The usefulness of trace elimination is twofold. Firstly, it can cause splitting of the

initial predicates, resulting in disjunctive pre-conditions. Secondly, the elimination

of a feasible trace acts as a decomposition of the problem.

3.2 Inferring Weaker Preconditions

We can combine the various transformations to derived weaker preconditions, as

shown in the following two propositions.

Proposition 1

Let P = P0 and let the sequence P0, P1, . . . , Pm be a sequence such that Pi =⇒false

Pi+1 (0 ≤ i < m). Then |=T presafe(P )→ presafe(Pm).

Proposition 1 allows the use of partial evaluation, constraint specialisation and

elimination of infeasible traces, in any order, in order to derive a weaker safe pre-

condition.

If we also eliminate feasible traces, then we have to keep track of the substitutions

arising from the eliminated trees.

Proposition 2

Let P = P0, ψ0 = true and let the sequence (P0, ψ0), (P1, ψ1), . . . , (Pm, ψm) be a

sequence of pairs where for (0 ≤ i < m)

• either Pi =⇒false Pi+1 and ψi = ψi+1, or

• Pi+1 is obtained by eliminating a feasible trace t from Pi , and ψi+1 = ψi∧¬θ,
where ¬θ is the constraint extracted from t, as in Lemma 4.

Then |=T presafe(P )→ (presafe(Pm) ∧ ψm).

Proposition 1 is a special case of Proposition 2, as if we do not eliminate any feasible

trees, then ψm is true and so |=T presafe(P )→ presafe(Pm).

As we showed, applying partial evaluation followed by constraint specialisation

for our running example was sufficient to derive the weakest safe precondition.

However, in more complex cases we need one or more iterations of these operations,

possibly with the elimination of feasible AND-trees as well. In the appendix, we

show an example (Figure 5) in which repeated application of partial evaluation

followed by constraint specialisation does not achieve a useful result, but where

the elimination of a single feasible AND-tree causes an optimal precondition to be

generated. However, there is a performance-precision trade off when removing a

feasible AND-tree. Trace elimination helps derive precise preconditions at the cost

of performance; the Fischer protocol is an example of this. It requires 4 iterations of

PE followed by CS to generate the optimal precondition (obtained in ≈8 seconds),

whereas these iterations interleaved by trace elimination require only 3 iterations

(but obtained in ≈30 seconds).
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4 Experimental Evaluation

Benchmarks. We experimented with three kinds of benchmark. (1) Unsafe I : Ex-

amples that are known to be unsafe, where the initial states are over-general. In

such cases the aim of safe precondition generation is to find out whether there is

a useful subset of the initial states that is safe. (2) Unsafe II : Examples that are

known to be unsafe, where the initial state is a counterexample state from which

false can be derived. In this case it is pointless to try to find a safe subset as above,

so we remove the given constraint on the initial state, and then try to derive a non-

trivial safe precondition. (3) Safe: Examples that are safe for given initial states.

In such cases, our aim is to try to weaken the conditions on the initial states. This

is done by removing the given constraints from the initial states and then deriving

safe preconditions. If we can generate safe preconditions that are more general than

the original constraints then we have generalised the program without losing safety.

For the experiments, we collected a set of 241 (188 safe/53 unsafe) programs

from a variety of sources. Most are from the repositories of state-of-the-art software

verification tools such as DAGGER (Gulavani et al. 2008), TRACER (Jaffar et al.

2012), InvGen (Gupta and Rybalchenko 2009), and from the TACAS 2013 Software

Verification Competition (Beyer 2013), with size up to approximately 500 lines of

code.1 Other examples are from the literature on precondition generation, back-

wards analysis or parameter synthesis (Bakhirkin et al. 2014; Miné 2012a; Miné

2012b; Moy 2008; Bakhirkin and Monniaux 2017; Cassez et al. 2017) and manually

translated to CHCs. Finally there are examples crafted by us; these are simple but

non-trivial examples whose precondition is easy to derive manually.

Implementation. We implemented an algorithm that builds a sequence as defined in

Proposition 2, of length 3n+ 2 (n ≥ 0), iteratively applying the transformations pe

(partial evaluation), cs (constraint specialisation) and te (trace elimination). The

safe precondition for P is presafe(cs ◦ pe ◦ (te ◦ cs ◦ pe)n(P )) (n ≥ 0). The

implementation is based on components from the Rahft verifier (Kafle et al. 2016).

This accepts CHCs (over the background theory of linear arithmetic) as input and

returns a Boolean combination of linear constraints in terms of the initial state

variables as a precondition. The tool is written in Ciao Prolog (Bueno et al. 1997)

and uses Yices 2.2 (Dutertre 2014) and the Parma Polyhedra Library (Bagnara

et al. 2008) for constraint manipulation. The experiments were carried out on a

MacBook Pro with a 2.7 GHz Intel Core i5 processor and 16 GB memory running

OS X 10.11.6, with a timeout of 300 seconds for each example. The results are

shown in Table 1, for varying number of specialisation iterations n.

Discussion. The classifications “more general” and “non-trivial” in Table 1 relate

the derived precondition I with the original condition on the initial states O. If

|=T I 6≡ false then the result is non-trivial. If |=T O → I then the derived precon-

1 Translated to CHCs using the program specialisation approach presented in De Angelis et al.
(2017). Thanks to the authors of that work for providing these benchmarks.
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n = 0 n = 1 n = 2 n = 3
Safe instances (188)

non-trivial (more general) 119 (101) 143 (125) 156 (129) 160 (131)
trivial/timeouts 69/0 45/3 32/10 28/16
avg. time (sec.) 1.45 14.69 27.52 36.73

Unsafe I instances (17)
non-trivial 16 17 17 17
trivial/timeouts 1/0 0/0 0/0 0/0
avg. time (sec.) 0.23 0.82 1.64 3.35

Unsafe II instances (36)
non-trivial 9 12 12 12
trivial/timeouts 27/0 24/2 24/7 24/7
avg. time (sec.) 3.38 50.41 64.72 70.91

Table 1: Results on 241 (188 safe and 53 unsafe) programs; timeout 5 minutes

dition is more general than the given initial states. For the safe benchmarks, the

“more general” results are a subset of the “non-trivial” results, while for the unsafe

benchmarks, the result cannot be more general than the original (unsafe) condition

and so there are no “more general” results.

For the safe benchmarks, the algorithm succeeds for n = 3 in generalising the

safe initial conditions in 131 of the 188 benchmarks, and returns a non-trivial safe

precondition in 160 of them. The remainder either return trivial results or a timeout.

A higher proportion of the unsafe benchmarks return a trivial safe precondition,

even when the initial state constraints are removed. A possible reason is that some

of these unsafe programs are designed with an internal bug, and thus have no safe

initial states. If the analysis returns a trivial safe precondition, it could be due to

imprecision of the analysis, but could also be an indication to the programmer to

look for the problem elsewhere than in the initial states.

The results in the column n = 0 show that the specialisation (cs ◦ pe) alone can

infer non-trivial preconditions for a large number of benchmarks, namely 63% (safe)

and 37% (unsafe) instances both in less than 10 seconds. Among 119 non-trivial

safe instances, 101 are generalised constraints.

Further specialisation (n > 0) increases the number of non-trivial and generalised

preconditions by relatively small percentages of the total. The increased precision of

the preconditions comes at a significant cost in time. For Safe, Unsafe I, and Unsafe

II instances, the average time goes from 1.45, 0.23 and 3.38 seconds, respectively,

when n = 0, to 36.73, 3.35 and 70.91 seconds, when n = 3. However, our prototype

implementation is amenable to much optimisation, including sharing results from

one iteration to the next, which could reduce the overhead. When there is a timeout

in iteration n, we present the precondition generated in iteration n− 1. Therefore,

since none of the instances timed out in iteration n = 0, the numbers of trivial and

non-trivial instances sums up to the total number of instances.

For the categories of literature and hand-crafted benchmarks in which we know

the weakest safe precondition, the tool is able to reproduce the results from the lit-

erature in n ≤ 1 iterations, except for Fischer’s protocol which requires 3 iterations

(see Appendix).
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5 Concluding Remarks

We have presented an iterative framework for computing a sufficient precondition

of a program with respect to assertions. Rather than relying on weakest precon-

dition calculation or intricate transfer functions, it uses off-the-shelf components

from program transformation and abstract interpretation. It does not depend on

specific abstract domain properties such as pseudo-complementation, but is domain-

independent and generic. The results on set of benchmarks are promising. We are

currently investing the conditions under which the derived preconditions are the

weakest possible, as well as other termination criteria for the refinement. The ben-

efit of such improved criteria is to generate optimal preconditions.
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Appendix I: Examples

The example in Figure 5 is taken from Beyer et al. (2007). The optimal precondi-

tion for this program is init(I, A, B, N)← N ≤ I ∧ A + B = 3 ∗ N. In order to derive

this, one needs to propagate constraints from the third and the fourth clauses (con-

strained facts corresponding to the predicate l) to the init clause. Since these

constraints are disjunctive (arising from two different clauses), the propagation

should be able to split the init predicate. The role of PE was to do that but it will

not since the l predicate is recursive and is not unfolded to control the blowup.

false← init(I, A, B, N), l(I, A, B, N).
l(I, A, B, N)← I < N, l body(A, B, A1, B1), I1 = I + 1, l(I1, A1, B1, N).
l(I, A, B, N)← I ≥ N, A + B > 3 ∗ N.
l(I, A, B, N)← I ≥ N, A + B < 3 ∗ N.
l body(A0, B0, A1, B1)← A1 = A0 + 1, B1 = B0 + 2.
l body(A0, B0, A1, B1)← A1 = A0 + 2, B1 = B0 + 1.
init(I, A, B, N).

Fig. 5: Example requiring trace elimination.

The constraint specialisation of the program in Figure 5 is shown in Figure 6.

If we derive a precondition from this program, we will get trivial false. As a next

step, we search for a derivation (counterexample) violating the safety. The trace

(represented as a term), namely, c1(c10,c2(c8,c5(c8,c5(c8,c5(c8,c6)))))) is

a counterexample. Then we remove this from the program in Figure 6 using the

automata theoretic approach described in Kafle and Gallagher (2017b).

c1. false← init(A, B, C, D), l 3(A, B, C, D).
c2. l 3(A, B, C, D)← −C + F >= 1,−A + D > 0, C− F >= −2, A− E = −1,

B + C− F− G = −3, l body 2(B, C, G, F), l 1(E, G, F, D).
c3. l 3(A, B, C, D)← B + C− 3 ∗ D > 0, A− D >= 0.
c4. l 3(A, B, C, D)← −B− C + 3 ∗ D > 0, A− D >= 0.
c5. l 1(A, B, C, D)← −C + F >= 1,−A + D > 0, C− F >= −2, A− E = −1,

B + C− F− G = −3, l body 2(B, C, G, F), l 1(E, G, F, D).
c6. l 1(A, B, C, D)← B + C− 3 ∗ D > 0,−A + D > −1, A− D >= 0.
c7. l 1(A, B, C, D)← −B− C + 3 ∗ D > 0,−A + D > −1, A− D >= 0.
c8. l body 2(A, B, C, D)← A− C = −1, B− D = −2.
c9. l body 2(A, B, C, D)← A− C = −2, B− D = −1.
c10. init(A, B, C, D).

Fig. 6: The constraint specialisation of the program in Figure 5, the clauses are

numbered for presentation purpose.

The removal causes the splitting of the predicate l, which the partial evaluation

can take advantage of in the next iteration. Re-application of PE followed by CS

generates the following clauses for init predicates (other clauses are not shown).

init 1(A, C, D, B)← B > A.
init 2(A, C, D, B)← A >= B, C + D > 3B.
init 3(A, C, D, B)← A >= B, 3 ∗ B > C + D.
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Then the precondition would be:

init(A, C, D, B)← ¬((B > A) ∨ (A ≥ B ∧ C + D > 3B) ∨ (A ≥ B ∧ 3 ∗ B > C + D))

Simplifying the formula and mapping to the original variables, we obtain the fol-

lowing formula as the final precondition

init(I, A, B, N)← N ≤ I ∧ A + B = 3 ∗ N.

Program Precondition
bakhirkin-fig3 (Bakhirkin et al. 2014) (1 ≤ a ≤ 99→ b ≥ 1) ∧ (a ≤ 0→ b 6= 0)
bakhirkin (Bakhirkin et al. 2014) 1 ≤ a ≤ 60 ∨ a ≥ 100
mine (Miné 2012a) 0 ≤ a ≤ 5
mon fig1 (Bakhirkin and Monniaux 2017) a = b ∧ a ≥ 0
moy (Moy 2008) b < 1 ∨ (b < 2 ∧ a > 0)
navas2 (crafted) a ≤ 99 ∨ b ≥ 100
simple function (Miné 2012b) 6 ≤ a ≤ 61
test both branches (Miné 2012b) 3 ≤ a ≤ 17
test nondet body (Miné 2012b) 6 ≤ a ≤ 13
test nondet cond (Miné 2012b) 3 ≤ a ≤ 17
test then branch (Miné 2012b) 10 ≤ a ≤ 20
fischer (Cassez et al. 2017) a + 2 ∗ c < b ∨ a < 0 ∨ b < 0 ∨ c ≤ 0
Jhala (Jhala and McMillan 2006) a < 0 ∨ a ≥ b ∨ c 6= d
Ball SLAM (Ball et al. 2004) b < c
client ssh protocol b < a ∨ b < 2 ∨ a > 3
Beyer et al. (2007) n ≤ i ∧ a + b = 3 ∗ n

Fig. 7: Derived safe preconditions for a set of examples from the literature. Results

were generated in at most 1 iteration in less than 1 second, except for fischer which

requires 3 iterations and 35 seconds.

Appendix II: Proofs

Lemma 1. Let P =⇒false P
′ be a specialisation transformation with respect to

false. Then |=T presafe(P )→ presafe(P ′)

Proof

This follows immediately from Definitions 4 and 5.

Lemma 2. Partial evaluation is a specialisation transformation (Definition 5).

Proof

The algorithm satisfies the standard condition of partial evaluation that it preserves

derivations of the given goal atom. The strengthening of the initial clauses follows

from the fact that our unfolding rule does not unfold the initial predicate. Hence

the result contains the initial clauses from the original, with constraints possibly

strengthened by the call constraints in the algorithm. (If a clause is never called,

its constraint is strengthened to false).

Lemma 3. Let P ′ be the result of eliminating an infeasible AND-tree t for false

from P . Then P =⇒false P
′.
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Proof

All derivations of false are preserved, and the transformation generates only

predicate-renamed copies of the original clauses, hence the initial clauses are pre-

served.

Lemma 4. Let P ′ be the result of eliminating a feasible AND-tree t for false

from P . Let pI(x) be the atom label of an initial node of t and let θ = constr(t)|x.

Then presafe(P ) = presafe(P ′) ∧ ¬θ.

Proof

¬θ is a sufficient condition, when conjoined with the body of the clause labelling

the initial node, to make t infeasible. All other derivations of false from P are

preserved in P ′. Hence the conjunction of ¬θ and presafe(P ′) is a safe precondition

for P .

Proposition 1. Let P = P0 and let the sequence P0, P1, . . . , Pm be a sequence

such that Pi =⇒false Pi+1 (0 ≤ i < m). Then |=T presafe(P )→ presafe(Pm).

Proof

By induction on the length of the sequence, applying Lemma 1.

Proposition 2. Let P = P0, ψ0 = true and let the sequence (P0, ψ0), (P1, ψ1), . . . ,

(Pm, ψm) be a sequence of pairs where for (0 ≤ i < m)

• either Pi =⇒false Pi+1 and ψi = ψi+1, or

• Pi+1 is obtained by eliminating a feasible trace t from Pi , and ψi+1 = ψi∧¬θ,
where ¬θ is the constraint extracted from t, as in Lemma 4.

Then |=T presafe(P )→ (presafe(Pm) ∧ ψm).

Proof

By induction on the length of the sequence, applying Lemma 1 and Lemma 4.
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