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Abstract
We present a method for specialising the constraints in constrained
Horn clauses with respect to a goal. We use abstract interpretation
to compute a model of a query-answer transformation of a given
set of clauses and a goal. The effect is to propagate the constraints
from the goal top-down and propagate answer constraints bottom-
up. Our approach does not unfold the clauses at all; we use the
constraints from the model to compute a specialised version of
each clause in the program. The approach is independent of the
abstract domain and the constraints theory underlying the clauses.
Experimental results on verification problems show that this is an
effective transformation, both in our own verification tools (convex
polyhedra analyser) and as a pre-processor to other Horn clause
verification tools.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

Keywords constraint specialisation; query-answer transforma-
tion; Horn clauses; abstract interpretation; convex polyhedral anal-
ysis

1. Introduction
In this paper, we present a method for specialising the constraints
in constrained Horn clauses with respect to a goal. To this end,
we first compute a query-answer transformation of a given set of
clauses (also called a constraint logic program) with respect to a
goal; the aim of the transformation is to simulate the top-down
evaluation of the clauses in a bottom-up framework. Then we use
abstract interpretation to compute a model of the query-answer
transformed program. The idea is to propagate the constraints from
the goal top-down and propagate answer constraints bottom-up.
Finally we compute a specialised version of each clause in the
original program using the constraints from the model without
unfolding the clauses at all.

As a result, each clause is further strengthened or removed alto-
gether, preserving the derivability of the goal. Static analysis of the
specialised program becomes easier since the implicit constraints in
the original clauses are made explicit in the specialised version. In
addition to this, since the specialised clauses are more constrained
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or more specific than the original ones, more specific information
will be available for proving the given goal or a failure to prove the
goal may be detected at an early stage.

The approach is independent of the abstract domain and the
constraints theory. Query-answer transformations, closely related
to so-called “magic set” transformations, have been used for Dat-
alog query processing and logic program analysis since the 1980s
[3, 16], but have not, to our knowledge, been applied to verification
problems. Experimental results on verification problems show that
this is an effective transformation, propagating information both
backwards from the statement to be proved, and forwards from
the Horn clause theory. We show its effectiveness both in our own
verification tools and as a pre-processor to other Horn Clause ver-
ification tools. In particular, we run our specialisation procedure
as a pre-processor both to our convex polyhedra analyser and to
QARMC [24, 43], a state of the art verification tool. We make the
following contributions in this paper:
• we present a method for specialising the constraints in the

clauses using query-answer transformation and abstract inter-
pretation (see Section 4); and

• we demonstrate the effectiveness of transformation by applying
it to Horn clause verification problems (see Section 6).

2. Preliminaries
A constrained Horn clause (CHC) is a first order predicate logic
formula of the form 8(� ^ p1(X1) ^ . . . ^ pk(Xk) ! p(X))

(k � 0), where � is a conjunction of constraints with respect to
some background theory, Xi, X are (possibly empty) vectors of
distinct variables, p1, . . . , pk, p are predicate symbols, p(X) is the
head of the clause and � ^ p1(X1) ^ . . . ^ pk(Xk) is the body.

Pure constraint logic programs (CLP) are syntactically and se-
mantically the same as CHC. Unlike CLP, CHCs are not always
regarded as executable programs, but rather as specifications or se-
mantic representations of other formalisms. However these are only
pragmatic distinctions and the semantic equivalence of CHC and
CLP means that techniques developed in one framework are appli-
cable to the other. We follow the syntactic conventions of CLP and
write a Horn clause as p(X)  �, p1(X1), . . . , pk(Xk). In this
paper we take the constraint theory to be linear arithmetic with the
relation symbols ,�, <,> and =, but the contributions of the
paper are independent of the constraint theory.

2.1 Interpretations and models
An interpretation of a set of CHCs is a truth assignment to
each atomic formula p(a1, . . . , an) where p is a predicate and
a1, . . . , an are constants from the constraint theory. An interpreta-
tion is represented as a set of constrained facts of the form A �
where A is an atomic formula p(Z1, . . . , Zn) where Z1, . . . , Zn

are distinct variables and � is a constraint over Z1, . . . , Zn. If �
is true we write A  or just A. The constrained fact A  � is



shorthand for the set of variable-free facts A✓ such that �✓ holds
in the constraint theory, and an interpretation M denotes the set of
all facts denoted by its elements; M assigns true to exactly those
facts. M1 ✓ M2 if the set of denoted facts of M1 is contained in
the set of denoted facts of M2.

Minimal models. A model of a set of CHCs is an interpretation
that satisfies each clause. There exists a minimal model with respect
to the subset ordering, denoted M [[P ]] where P is the set of CHCs.
M [[P ]] can be computed as the least fixed point (lfp) of an immedi-
ate consequences operator (called SD

P in [28, Section 4]), which is
an extension of the standard TP operator from logic programming,
extended to handle the constraint domain D. Furthermore lfp(SD

P )

can be computed as the limit of the ascending sequence of interpre-
tations ;, SD

P (;), SD
P (SD

P (;)), . . .. This sequence provides a basis
for abstract interpretation of CHC clauses.

3. Abstract Interpretation
Abstract interpretation [11] is a static program analysis technique
which derives sound overapproximations of programs by comput-
ing abstract fixed points. Convex polyhedra analysis (CPA) [13]
is a program analysis technique based on abstract interpretation
[11]. When applied to a set of CHCs P it constructs an over-
approximation M 0 of the minimal model of P , where M 0 contains
at most one constrained fact p(X)  � for each predicate p. The
constraint � is a conjunction of linear inequalities, representing a
convex polyhedron.

The first application of convex polyhedra analysis to CHCs was
by Benoy and King [4]. We summarise briefly the elements of con-
vex polyhedra analysis for CHC; further details (with application to
CHC) can be found in [4, 13]. Let A be the set of convex polyhedra
(for some fixed dimension). Let P be a set of CHCs. Suppose there
are n predicates in P , say p1, . . . , pn, and assume to simplify the
discussion that all predicates have the same arity (the dimension
of A). The abstract domain for P is the set of n-tuples of convex
polyhedra An. Let the empty polyhedron be denoted ?. Inclusion
of polyhedra is a partial order on A and the partial order v on An

is its pointwise extension. Given an element hd1, . . . , dni 2 An,
define the concretisation function � such that �(hd1, . . . , dni) =

{hp1(a1), . . . , pn(an)i | ai is a point in di, 1  i  n}. Con-
struct an abstract semantic function F : An ! An satisfying
the safety condition SD

P � � ✓ � � F which is monotonic with
respect to v, where SD

P is the immediate consequences operator
mentioned above. Let the increasing sequence Y0, Y1, . . . be de-
fined as follows. Y0 = ?n, Yn+1 = F (Yn). These conditions are
sufficient to establish that if the limit of the sequence exists, say Y ,
that M [[P ]] = lfp(SD

P ) ✓ �(Y ) [12].
Since An contains infinite increasing chains, the sequence can

be infinite. The use of a widening operator for convex polyhedra
[11, 13] is needed to ensure convergence of the abstract interpreta-
tion. Define the sequence Z0 = Y0, Zn+1 = ZnrF (Zn) where
r is a widening operator for convex polyhedra [13]. The condi-
tions on r ensure that the sequence stabilises; thus for some finite
j, Zi = Zj for all i > j and furthermore that Zj is an upper
bound for the sequence {Yi}. The value Zj thus represents, via
the concretisation function �, an over-approximation of the least
model of P . Furthermore much research has been done on improv-
ing the precision of widening operators. One technique is known as
widening-upto, or widening with thresholds [27]. A threshold is an
assertion that is combined with a widening operator to improve its
precision. Recently, a technique for deriving more effective thresh-
olds was developed [34], which we have adapted and found to be
very effective in experimental studies. In brief, the method collects
constraints by iterating the concrete immediate consequence func-

tion SD
P three times starting from the “top” interpretation, that is,

the interpretation in which all atomic facts are true.

4. Specialisation by constraint propagation
We next present a procedure for specialising CHCs. In contrast to
classical specialisation techniques based on partial evaluation with
respect to a goal, the specialisation does not unfold the clauses
at all; rather, it computes a specialised version of each clause, in
which the constraints from the goal are propagated top-down and
answers are propagated bottom-up.

We first make precise what is meant by “specialisation” for
CHCs. Let P be a set of CHCs and let A be an atomic formula. The
specialisation of P with respect to A is a set of clauses PA such that
for every constraint � over the variables of A, P |= 8(� ! A) if
and only if PA |= 8(� ! A). This is a very general definition
that allows for many transformations. In practice we are interested
in specialisations that eliminate consequences of P that have no
relevance to A.

For each clause H  B in P , PA contains a new clause
H  �,B where � is a constraint. If the addition of � makes
the clause body unsatisfiable, it is the same as removing the clause.
Clearly PA may have fewer consequences than P but our proce-
dure guarantees that it preserves the inferability of (constrained in-
stances of) A. The procedure is summarised as follows: the inputs
are a set of CHCs P and an atomic formula A.

1. Compute a query-answer transformation of P with respect
to A, denoted P qa, containing predicates pq and pa for each
predicate p in P .

2. Compute an over-approximation M of the model of P qa.
3. Strengthen the constraints in the clauses in P , by adding con-

straints from the answer predicates in M .

Next we will explain each step in detail.

4.1 The query-answer transformation
The query-answer transformation in CLP was inspired by the
magic-set transformation from deductive databases and the lan-
guage Datalog [3]. Its purpose, both in deductive databases and
in subsequent applications in logic program analysis [16] was to
simulate goal-directed (top-down) computation or deduction in a
goal-independent (bottom-up) framework.

In the following, for each atom A = p(t), Aa and Aq represent
the atoms pa(t) and pq(t) respectively. Given a set of CHCs P and
an atom A, the (left-) query-answer clauses for P with respect to
A, denoted P qa

A or just P qa, are as follows.

• (Answer clauses). For each clause H  �, B1, . . . , Bn (n �
0) in P , P qa contains the clause Ha  �, Hq, Ba

1, . . . , B
a
n.

• (Query clauses). For each clause H  �, B1, . . . , Bi, . . . , Bn

(n � 0) in P , P qa contains the following clauses:

Bq
1  �, Hq.

· · ·
Bq

i  �, Hq, Ba
1, . . . , B

a
i�1.

· · ·
Bq

n  �, Hq, Ba
1, . . . , B

a
n�1.

• (Goal clause). Aq  true.

The clauses P qa encodes a left-to-right, depth-first computation of
the query A for CHC clauses P (that is, the standard CLP com-
putation rule, SLD extended with constraints). This is a complete
proof procedure, assuming that all clauses matching a given call are
explored in parallel. (Note: the incompleteness of standard Prolog



CLP proof procedures arises due to the fact that clauses are tried in
a fixed order). It is important to generate the queries and answers in
a single set of clauses, since in general the predicates pq and pa are
mutually recursive. Independent analyses propagating constraints
from head to body of the clauses and propagating constraints from
body to head would not in general achieve the same specialisation.

The relationship of the model of the clauses P qa to the computa-
tion of the goal A in P is expressed by the following property1.
An SLD-derivation in CLP is a sequence G0, G1, . . . , Gk where
each Gi is a goal  �, B1, . . . , Bm, where � is a constraint and
B1, . . . , Bm are atoms. In a left-to-right computation, Gi+1 is ob-
tained by resolving B1 with a program clause. The model of P qa

captures the set of atoms that are “called” or “queried” during the
derivation, together with the answers (if any) for those calls. This
is expressed precisely by Property 1.

PROPERTY 1 (Correctness of query-answer transformation). Let
P be a set of CHCs and A be an atom. Let P qa be the query-
answer program for P wrt. A. Then

(i) if there is an SLD-derivation G0, . . . , Gi where G0 = A and
Gi = �, B1, . . . , Bm, then P qa |= 8(�|vars(B1) ! Bq

1);
(ii) if there is an SLD-derivation G0, . . . , Gi where G0 = A,

containing a sub-derivation Gj1 , . . . , Gjk , where Gji  
�0, B1,B0 and Gjk = �,B0, then P qa |= 8(�|vars(B1) !
Ba

1). (This means that the atom B1 in Gji was successfully
answered, with answer constraint �|vars(B1)).

(iii) As a special case of (ii), if there is a successful derivation of the
goal A with answer constraint � then P qa |= 8(�! Aa

).

Variations such as the following have been used.

• (Refined call predicates). Call predicates of the form pqi,j could
be generated representing calls to the ith atom in the body of
clause j [20], giving more fine-grained information on calls.

• (Relaxed answer predicates). In this version the answer clauses
are the same as the original clauses of p, and every answer
predicate pa is just replaced by p. This can be used where the
only interest is in the model of the query predicates, and the
motivation is to increase efficiency of analysis of P qa, while
possibly losing precision [9].

• (Other computation rules). Left-to-right computation could be
replaced by right-to-left or any other order. The success or fail-
ure of a goal is independent of the computation rule; hence
we could generate answers using other computation rules, or
combining computation rules [21]. While different computation
rules do not affect the model of the answer predicates, more ef-
fective propagation of constraints during program analysis, and
thus greater precision, can sometimes be achieved by varying
the computation rule.

For each such variation a correctness property can be stated relating
the model of the query-answer program to the SLD computation of
the given program P and goal A.

4.2 Over-approximation of the model of P qa

The query-answer transformation of P with respect to A is com-
puted. It follows from Property 1(iii) that if A is derivable from
P then P qa |= Aa. Abstract interpretation of P qa yields an over-
approximation of M [[P qa

]], say M 0, containing constrained facts

1 Note that the model of P qa might not correspond exactly to the calls
and answers in the SLD-computation, since the CLP computation treats
constraints as syntactic entities through decision procedures and the actual
constraints could differ.

for the query and answer predicates. These represent the calls and
answers generated during all derivations starting from the goal A.
In our experiments we use a convex polyhedra approximation of
M [[P qa

]], as described in Section 3.

4.3 Strengthening the constraints in P

We use the information in M 0 to specialise the original clauses
in P . Suppose M 0 contains constrained facts pq(X)  �q and
pa(X)  �a. (If there is no constrained fact p⇤(X)  �⇤ for
some p⇤ then we consider M 0 to contain p⇤(X) false).

For each clause

p(X) �, p1(X1), . . . , pk(Xk)

in P , construct a clause

p(X) �,�0,�1, . . . ,�n, p1(X1), . . . , pk(Xk)

in PA, where pa(X)  �0, pa1(X)  �1, . . . , p
a
n(X)  �n are

in M 0. Here we assume that there is exactly one constrained fact
in M 0 for each predicate pa, pa1 , . . . , p

a
n. Disjunctive constraints

can be eliminated from the specialised clauses by further transfor-
mation and clauses containing the constraint false in the body are
eliminated.

Note that wherever M 0 contains constrained facts pa(X) �a

and pq(X)  �q, we have �a ! �q since the answers for p are
always stronger than the calls to p. Thus it suffices to add only
the answer constraints to the clauses in P and we can ignore the
model of the query predicates. A special case of this is where M 0

contains a constrained fact pq(X) �q but there is no constrained
fact for pa(X), or in other words M 0 contains the constrained fact
pa(X)  false . This means that all derivations for p(X) fail or
loop in P and so adding the answer constraint false for p eliminates
looping and failed derivations for p.

Specialisation by strengthening the constraints preserves the an-
swers of the goal with respect to which the query-answer transfor-
mation was performed. In particular, we have the following prop-
erty.

PROPERTY 2. If P is a set of CHCs and PA is the set obtained by
strengthening the clause constraints as just described, then P |= A
if and only if PA |= A.

The proof of Property 2 is by induction on the length of derivations
of A. For each derivation of A using the clauses of P we can
construct a derivation of A in PA and conversely.

The specialisation and analysis are separate in our approach.
More complex algorithms intertwining them can be envisaged,
though the benefits are not clear. Iteration of our procedure could
potentially yield further specialisation.

5. Application to the CHC verification problem
In this section, we discuss the application of our constraint spe-
cialisation in Horn clause verification. We assume that there is a
distinguished predicate symbol false in P which is always inter-
preted as false. In practice the predicate false only occurs in the
head of clauses; we call clauses whose head is false integrity con-
straints, following the terminology of deductive databases. Thus
the formula �1  �2 ^B1(X1), . . . , Bk(Xk) is equivalent to the
formula false  ¬�1 ^ �2 ^ B1(X1), . . . , Bk(Xk). The latter
might not be a CHC (e.g. if �1 contains =) but can be converted
to an equivalent set of CHCs by transforming the formula ¬�1 and
distributing any disjunctions that arise over the rest of the body. For
example, the formula X = Y  p(X,Y ) is equivalent to the set
of CHCs {false X > Y, p(X,Y ), false X < Y, p(X,Y )}.

Integrity constraints can be seen as safety properties. For ex-
ample if a set of CHCs encodes the behaviour of a transition sys-
tem, the bodies of integrity constraints represent unsafe states. Thus



proving safety consists of showing that the bodies of integrity con-
straints are false in all models of the CHC clauses. Figure 1 shows
an example set of CHCs taken from [23].

c1. false :- A>0,B=0,C=0,D=0,l(B,C,D,A).

c2. l(A,B,C,D) :- -A+D>0,A-G= -1, l_body(B,C,E,F),

l(G,E,F,D).

c3. l(A,B,C,D) :- A-D>=0,B+C-3*D>0.

c4. l(A,B,C,D) :- A-D>=0,-B-C+3*D>0.

c5. l_body(A,B,C,D) :- A-C= -1,B-D= -2.

c6. l_body(A,B,C,D) :- A-C= -2,B-D= -1.

Figure 1. Example program t4.pl [23]

5.1 The CHC verification problem.
To state this more formally, given a set of CHCs P , the CHC
verification problem is to check whether there exists a model of
P . If so we say that P is safe. Obviously any model of P assigns
false to the bodies of integrity constraints. We restate this property
in terms of the logic consequence relation. Let P |= F mean that
F is a logical consequence of P , that is, that every interpretation
satisfying P also satisfies F .

LEMMA 1. P has a model if and only if P 6|= false.

This lemma holds for arbitrary interpretations (only assuming
that the predicate false is interpreted as false), uses only the text-
book definitions of “interpretation” and “model” and does not de-
pend on the constraint theory.

The verification problem can be formulated deductively rather
than model-theoretically. We can exploit proof procedures for con-
straint logic programming [28] to reason about the satisfiability of a
set of CHCs. Let the relation P ` A denote that A is derivable from
P using some proof procedure. If the proof procedure is sound then
P ` A implies P |= A, which means that P ` false is a sufficient
condition for P to have no model, by Lemma 1. This corresponds
to using a sound proof procedure to find or check a counterexample.
On the other hand to show that P does have a model, soundness is
not enough since we need to establish P 6|= false. As we will see in
Section 5.2 we approach this problem by using approximations to
reason about the non-provability of false, applying the theory of ab-
stract interpretation [10] to a complete proof procedure for atomic
formulas (the “fixed-point semantics” for constraint logic programs
[28, Section 4]). In effect, we construct by abstract interpretation a
proof procedure that is complete (but possibly not sound) for proofs
of atomic formulas. With such a procedure, P 6` false implies
P 6|= false and thus establishes that P has a model.

5.2 Proof Techniques
Proof by over-approximation of the minimal model. It is a stan-
dard theorem of CLP that the minimal model M [[P ]] is equivalent
to the set of atomic consequences of P . That is, P |= p(v1, . . . , vn)
if and only if p(v1, . . . , vn) 2 M [[P ]]. Therefore, the CHC verifi-
cation problem for P is equivalent to checking that false 62M [[P ]].
It is sufficient to find a set of constrained facts M 0 such that
M [[P ]] ✓M 0, where false 62M 0. This technique is called proof by
over-approximation of the minimal model.

Proof by specialisation. A specialisation of a set of CHCs P
with respect to an atom A is the transformation of P to another
set of CHCs P 0 such that P |= A if and only if P 0 |= A. In
our context we use specialisation to focus the verification problem
on the formula to be proved. More specifically, we specialise a
set of CHCs with respect to a “query” to the atom false; thus the
specialised CHCs entail false if and only if the original clauses

entailed false. The constraint strengthening procedure described in
Section 4 is our method of specialisation.

Consider the application of the procedure in Section 4 to the
clauses in Figure 1, where the query-answer transformation is
performed with respect to the atom false. The result is shown in
Figure 2. Note that the constraint in clause c4 is strengthened to
false, showing that c4 is definitely not used in any derivation of
false (and hence can be removed).

c1. false :- A>0,B=0,C=0,D=0,l(B,C,D,A).

c2. l(A,B,C,D) :- 2*A-B>=0,-A+D>0,-A+B>=0,3*A-B-C=0,

A-G= -1,l_body(B,C,E,F),l(G,E,F,D).

c3. l(A,B,C,D):- A-D>0,D>0,2*A-B>=0,-A+D> -1,

-A+B>=0,3*A-B-C=0.

c4. l(A,B,C,D):- false.

c5. l_body(A,B,C,D) :- -A+2*B>=0, 2*A-B>=0,

A-C= -1,B-D= -2.

c6. l_body(A,B,C,D) :- -A+2*B>=0,2*A-B>=0,A-C= -2,

B-D= -1.

Figure 2. Example program t4.pl [23] with strengthened con-
straints

5.3 Analysis of the specialised clauses
Having specialised the clauses with respect to false, it may be that
the clauses Pfalse do not contain a clause with head false. In this
case safety is proven, since clearly this is a sufficient condition for
Pfalse 6|= false.

If this check fails we still do not know whether P has a model.
In this case we can perform the convex polyhedral analysis on
the clauses Pfalse. As the experiments later show, safety is often
provable by checking the resulting model; if no constrained fact for
false is present, then Pfalse 6|= false. If safety is not proven, there are
two possibilities: the approximate model is not precise enough, but
P has a model, or there is a proof of false. Refinement techniques
could be used to distinguish these, but this is not the topic of this
paper.

In summary, our experimental procedure for evaluating the ef-
fectiveness of constraint specialisation contains two steps. Given a
set of CHCs P with integrity constraints: (1) Compute a special-
isation of P with respect to false yielding Pfalse. If Pfalse contains
no integrity constraints, then P is safe. (2) If Pfalse does contain in-
tegrity constraints, perform a convex polyhedra analysis of Pfalse. If
the resulting approximation of the minimal model contains no con-
strained fact for the predicate false, then Pfalse is safe and hence P
is safe. If we find a concrete derivation for false then we conclude
that P is unsafe. Otherwise, P is possibly unsafe.

6. Experimental evaluation
Table 1 presents experimental results of applying our constraint
specialisation to a number of Horn clause verification bench-
marks taken from the repository of Horn clause verification2 and
other sources including [5, 15, 23, 25, 29]. The columns CPA and
QARMC present the results of verification using convex polyhedra
and QARMC respectively, whereas columns CS + CPA and CS +
QARMC show the result of running constraint specialisation fol-
lowed by CPA or QARMC. The symbol “-” in the table denotes
irrelevant. The experiments were carried out on an Intel(R) X5355
quad-core (@ 2.66GHz) computer with 6 GB memory running
Debian 5. We set 5 minutes of timeout for each experiment. The
specialisation procedure is implemented in 32-bit Ciao Prolog [7]
and uses the Parma Polyhedra Library [1].

2 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/



The results show that constraint specialisation is effective in
practice. We report that 109 out of 218, that is 50%, of the prob-
lems are solved by constraint specialisation alone. When used as
a pre-processor for other verification tools, the results show im-
provements on both the number of instances solved and the solu-
tion time. Using our tool, we report approximately 47% increase in
the number of instances solved and twice as much faster in average.
Similarly using QARMC, we report 13% increase in the number of
instances solved and 5 times faster in average.

CPA CS + CPA QARMC CS + QARMC
solved (safe/unsafe) 61 (48/13) 162 (144/18) 178 (141/37) 205 (171/34)
unknown / timeout 144/12 49/7 -/40 -/13
total time (secs) 2317 1303 13367 2613
average time (secs) 10.62 5.97 61.31 11.98
%solved 27.98 74.31 81.65 94.04

Table 1. Experiments on a set of 218 (181 safe and 37 unsafe)
CHC verification problems

The (perhaps surprising) effectiveness of this relatively simple
combination of specialisation and convex polyhedral analysis is
underlined by noting that it can solve problems for which more
complex methods have been proposed. For example, apart from the
many examples from the Horn clause verification benchmarks that
require refinement using CEGAR-based approaches, the technique
solves the “rate-limiter” and “Boustrophedon” examples presented
by Monniaux and Gonnord [40] (Section 5) (directly encoded as
Horn clauses); their approach, also based on convex polyhedra,
uses bounded model checking to achieve a partitioning of the ap-
proximation, while other approaches to such problems use trace-
partitioning and look-ahead widening.

7. Related Work
Techniques for strengthening the constraints of logic programs go
back at least to the work of Marriott et al. on most specific logic
programs [39]. In that work the constraints were just equalities
between terms and the strengthening was goal-independent. In [19]
the idea was similar but it was extended to strengthen constraints
while preserving the answers with respect to a goal.

The partial evaluation of (constraint) logic programs also has
a long history [17, 18, 30, 32]. The aim is to specialise a program
with respect to a goal, but usually unfolding is the key technique for
propagating constraints. Global analysis using abstract interpreta-
tion was combined with partial evaluation algorithms to propagate
constraints bottom-up as well as top-down [22, 31, 33, 35, 36].

Abstract interpretation over the domain of convex polyhedra
was introduced by Cousot and Halbwachs [13] and applied to con-
straint logic programs by Benoy and King [4]. Abstract interpreta-
tion over convex polyhedra was incorporated in a program special-
isation algorithm by Peralta and Gallagher [41].

The method of widening with thresholds for increasing the
precision of widening convex polyhedra was first presented by
Halwachs et al. [27]. We applied a technique for generating thresh-
old constraints presented by Lakhdar-Chaouch et al. [34].

In summary, the basic specialisation techniques that we apply
are well known, though we are not aware of previous work com-
bining them in the same way. Our method is a specialisation with
respect to a goal but does not perform partial evaluation by unfold-
ing. The aim of our specialisation is to make constraints explicit and
propagate constraints as much as possible, thereby making other
tools more effective, rather than to produce a more efficient com-
putation of a goal.

Verification of CLP programs using abstract interpretation and
specialisation has been studied for some time. Our aim in this
paper is not to demonstrate a verification tool but to identify a
transformation that benefits CLP verification tools generally.

The idea of improving analysis by applying it to a specialised
program was first expressed by Turchin [44] and it was more re-
cently demonstrated using supercompilation [38]. The use of pro-
gram transformation to verify properties of logic programs was pi-
oneered by Pettorossi and Proietti [42] and Leuschel [37] and con-
tinues in recent work by De Angelis et al. [14, 15]. Transformations
that preserve the minimal model (or other suitable models) of logic
programs are applied systematically to make properties explicit.

Much other work on CLP verification exists, much of it based
on property abstraction and refinement using interpolation, for ex-
ample [2, 6, 8, 24, 26, 43]. Our specialisation technique is not di-
rectly comparable to these methods, but as we have shown in ex-
periments with QARMC, constraint specialisation can be used as a
pre-processor to such tools, increasing their effectiveness.

8. Conclusion and future Work
We introduced a method for specialising the constraints in con-
strained Horn clauses with respect to a goal using abstract inter-
pretation and query-answer transformation. The approach propa-
gates constraints globally, both forwards and backwards, and makes
explicit constraints from the original program. This allows better
analysis of the transformed program. Furthermore, our approach is
independent of the abstract domain and the constraints theory un-
derlying the clauses. Finally, we showed effectiveness of this trans-
formation in Horn clause verification problems.

In the future, we will continue to evaluate its effectiveness in a
larger set of benchmarks and as a pre-processor for other existing
tools. We also would like to use the specialised version for other
purposes, for instance in program debugging since more specific
information may make errors in the original program apparent.
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