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Abstract

We present a method for specialising the constraints in constrained Horn clauses with respect
to a goal. We use abstract interpretation to compute a model of a query-answer transformed pro-
gram of a given set of clauses and a goal. The effect is to propagate the constraints from the goal
top-down and propagate answer constraints bottom-up. We use the constraints from the model
to compute a specialised version of each clause in the program. The specialisation procedure can
be repeated to yield further specialisation. The approach is independent of the abstract domain
and the constraint theory underlying the clauses. Experimental results on verification problems
show that this is an effective transformation, both in our own verification tools (convex polyhedra
analyser) and as a pre-processor to other Horn clause verification tools.

Keywords: constraint specialisation, query-answer transformation, Horn clauses, abstract
interpretation, convex polyhedral analysis

1. Introduction

In this paper, we present a method for specialising the constraints in constrained Horn clauses,
CHCs in short (also called constraint logic programs) with respect to a goal. The verification
problem that we address has the following setting: a set of constrained Horn clauses formalises
some system and the goal is an atomic formula representing a property of that system. We wish
to check whether the goal is a consequence of the Horn clauses. The constraint specialisation
procedure uses abstract interpretation to compute constraints propagated both from the goal top-
down and constraints in the clauses bottom-up. Then we construct a specialised version of each
clause by inserting the relevant constraints, without unfolding the clauses at all. As a result,
each clause is further strengthened or removed altogether, while preserving the derivability of
the goal.

Verification of this specialised set of clauses becomes more effective since some implicit
invariants in the original clauses are discovered and made explicit in the specialised version.
A central problem in all automatic verification procedures is to find invariants, and this is the
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int a ,b;

while (*) { // loop invariant l(a,b)

a = a + b;

b = b + 1;

}

(a) Example program Loop add

a = 1 ∧ b = 0→ l(a, b)
l(a′, b′) ∧ a = a′ + b′ ∧ b = b′ + 1→ l(a, b)
l(a, b)→ a ≥ b

(b) Verification conditions for Loop add

Figure 1: Motivating example

c1. l(A,B):- A=1, B=0.

c2. l(A,B):- A=C+D, B=D+1, l(C,D).

c3. false :- B>A, l(A,B).

Figure 2: Verification conditions for Loop add in CLP syntax

underlying reason for the usefulness of our constraint specialisation procedure. The approach is
independent of the abstract domain and the constraint theory.

While specialisation has been applied to verification and analysis problems before, the nov-
elty of our procedure is to do specialisation without any unfolding. The only specialisation is to
strengthen constraints within each clause, possibly eliminating a clause if its constraints become
unsatisfiable. This seems to capture the essence of the role of constraint propagation, separated
from other operations such as clause unfolding. Somewhat surprisingly, this apparently limited
form of specialisation is capable of handling a lot of verification benchmarks on its own; on the
other hand, due to its simple form, constraint specialisation is a useful pre-processing step for
verification tools incorporating a wider range of techniques. We postulate that making invariants
explicit contributes positively to the effect of other constraint manipulation operations such as
widening and interpolation. We therefore present the procedure as a useful tool in a toolbox for
verification of constrained Horn clauses.

Motivating example. We present an example program in Figure 1. The problem is to show that if
a = 1 ∧ b = 0 holds before executing the program Loop add in Figure 1a (taken from [16]) then
a ≥ b holds after executing it. The problem is considered safe if the Hoare triple {a = 1 ∧ b = 0}
Loop add {a ≥ b} is valid. Figure 1b shows the Horn clauses whose satisfiability establishes this
property (its equivalent representation in Constraint Logic Programing (CLP) syntax is shown in
Figure 2). Please note that the last clause in Figure 1b can be equivalently written as l(a, b) ∧
b > a → f alse. It is a simple but still challenging problem for many verification tools for
constrained Horn clauses. The invariant a ≥ b ∧ b ≥ 0 on the predicate l(a, b) proves this
program safe. Finding this invariant is a challenging task for many state of the art verification
tools. For example QARMC [30] or SeaHorn [33] (using only the PDR engine) do not terminate
on this program. However, SeaHorn (with PDR and the abstract interpreter IKOS) solves it in
less than a second. The tool based on specialisation of Horn clauses [16] needs at least forward
and backward iteration to solve this problem. We discuss how our constraint specialisation solves
this example without needing further iteration.

1.1. Related Work

There is a good deal of related work, since our procedure draws on a number of different
techniques which have been applied in different contexts and languages. The basic specialisation
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and analysis techniques that we apply are well known, though we are not aware of previous work
combining them in the way we did or applying them effectively in verification problems.

Constraint specialisation. Methods for strengthening the constraints in logic programs go back
at least to the work of Marriott et al. on most specific logic programs [59]. In that work the
constraints were just equalities between terms and the strengthening was goal-independent. We
say a clause H ← φ, B1, . . . , Bn is strengthened version of H ← ψ, B1, . . . , Bn if φ → ψ. This
can be extened to a (logic) program if all clauses in the program are strengthened. In [24]
the idea was similar but it was extended to strengthen constraints while preserving the answers
with respect to a goal. Constraint strengthening was also applied for extracting determinacy
in logic program executions [14], in a goal-dependent setting, and arithmetic constraints were
also handled. The purpose of constraint strengthening in these works was to improve execution
efficiency, for example by detecting failure earlier or to allow more efficient compilation.

Furthermore the idea of constraint propagation leading to specialisations is widespread in
constraint-based languages and problem-solving frameworks [60, 70] as well as in partial evalu-
ation and program specialisation [22, 23, 25, 42, 44, 51, 52, 54, 55, 72].

Query-answer transformations and related methods. A central tool in our procedure is query-
answer transformation, which is related to the so-called “magic set” transformation. We prefer
the terminology query-answer transformation to the name magic set transformation in the liter-
ature, as it reflects the purpose of the transformation. The verification problem that we consider
in this paper is whether a given goal A is a consequence of a set of Horn clauses P. The rele-
vance of the query-answer transformation to this problem is that the search for a proof can be
attempted “top-down” starting from the error state encoded by the predicate A, or “bottom-up”
starting from the program’s behaviour characterised by P. A query-answer transformation spe-
cialises the clauses in P with respect to the goal A and allows bottom-up and top-down search to
be combined.

The “magic set” transformation originated in the field of Datalog query processing in the
1980s [3, 68, 74]. In the Datalog context, the transformation was invented to combine the effi-
ciency of bottom-up evaluation with the focussed evaluation of a top-down search starting from a
given query. The transformation with respect to the query returns a set of Datalog rules and facts
that are extensions of the original ones except that they contain extra conditions (the so-called
“magic predicates”) expressing the dependence on the query, together with extra rules for these
magic predicates. The resulting rules and facts can be evaluated “bottom-up” allowing efficient
algorithms for bottom-up evaluation to be applied, without the potential inefficiency of an undi-
rected goal-independent search. The “magic sets” and “magic templates” techniques for Datalog
also incorporate input-output modes, but the more general notion of query-answer transformation
that we use does not require these.

Applications of query-answer transformations in logic program analysis [10, 14, 20, 27] have
a similar motivation. Analysis of a program can be either goal-independent, deriving an approx-
imation of the model of a program which implicitly expresses the behaviour of all goals, or
goal-dependent, deriving an approximation of a top-down derivation of a specific goal. Algo-
rithms for goal-independent analysis are generally simpler to implement, but precision of an
analysis can be lost compared to a goal-dependent analysis. A query-answer transformations
allows the goal-dependence to be “compiled in” to the program clauses; analysis of the resulting
transformed clauses using a goal-independent analysis framework yields results that are at least
as precise as with a goal-dependent analysis.
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Although not formulated as a program transformation, the semantic concept of a minimal
function graph is related to query-answer transformations. Given a function f : A → B, its
function graph is the set of pairs {x 7→ f (x) | x ∈ A}. Given some “call” to the function, say
f (a), the minimal function graph is the smallest set of pairs x 7→ f (x) sufficient to evaluate
f (a) (ignoring calls to subsidiary functions). This is in general a subset of the function graph
of f . Minimal function graph semantics have been formulated for both functional [43, 45] and
logic programming [25, 75] languages and applied to program analysis problems. The “query”
or “magic” predicates of the transformations appear in minimal function graph constructions
as a set of function invocations computed top-down from the call. Informally, a query-answer
transformation for logic programs could be viewed as a “compilation” of the minimal graph
semantics with respect to a specific program and goal, though further study is needed to formalise
this view.

Abstract interpretation. Abstract interpretation [11] is a static program analysis technique which
derives sound over-approximations of programs by computing abstract semantics. Abstract inter-
pretation over a domain of convex polyhedra was first achieved by Cousot and Halbwachs [13]
and applied to constraint logic programs by Benoy and King [4]. Abstract interpretation over
convex polyhedra was incorporated in a program specialisation algorithm by Peralta and Gal-
lagher [65]. The method of widening with thresholds for increasing the precision of widening
over the domain of convex polyhedra was first presented by Halbwachs et al. [35]. We adapted
and applied a technique for generating threshold constraints presented by Lakhdar-Chaouch et
al. [53]. We apply abstract interpretation over the domain of convex polyhedra to derive an
over-approximation of the model of the query-answer transformed program.

Verification by specialisation. The use of program transformation to verify properties expressed
as constraint logic programs was pioneered by Pettorossi and Proietti [66] and Leuschel [56]
and continues in recent work by De Angelis et al. [15, 17]. Transformations that preserve the
minimal model (or other suitable semantics) of logic programs are applied systematically to make
properties explicit. Our tool can be regarded as identifying the essence of these tools, namely
constraint propagation forwards and backwards within the program. The program specialisation
technique supercompilation [72], which also inherently involves constraint propagation through
“driving”, was applied as a tool to verify statements [49, 50, 57]. Supercompilation is a language
independent concept originally developed for the functional language REFAL and later adapted
for some other languages as well.

CLP verification tools. Verification of CLP programs has been studied for some time. Our aim
in this paper is not to demonstrate a new verification tool but to identify a transformation that
can often verify programs on its own and also benefits CLP verification tools generally as a
pre-processor. The work closest to ours is by De Angelis et al. [16]; that method also includes
forward and backward propagation of constraints using fold-unfold transformation. Furthermore
the forward propagation method in that work uses a program reversal which can only be applied
to linear Horn clauses (a transition system) whereas we can handle also non-linear clauses. How-
ever there are various methods for linearisation of Horn clauses in the literature [18, 47]. The
resulting program in their approach can blow up in size with respect to the original program,
whereas constraint specialisation cannot.

Much other work on CLP verification exists, much of it based on property abstraction and
refinement using interpolation, for example [9, 29, 67, 2, 8, 31]. Our specialisation technique is
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not directly comparable to these methods, but as we have shown in experiments with QARMC
and Eldarica, constraint specialisation can be used as a pre-processor to such tools, increasing
their effectiveness. The model checking algorithm implemented in Eldarica for Horn clause
verification is similar in spirit to the one described in [29] but uses disjunctive interpolation for
counterexamples generalisation, instead of tree interpolation, which is strictly more general than
tree interpolation [69]. The approach described in this paper is used as a pre-processor of Horn
clauses in the tool Rahft [48].

1.2. Overview and contributions of the paper

In Section 2 the relevant notation and theory concerning CHCs is presented. Following this,
Section 3 describes various methods and techniques employed in our procedure, in the form re-
quired. These include an algorithm for computing an abstract interpretation of a set of CHCs
over the domain of convex polyhedra in Section 3.1 and the details of the query-answer trans-
formation in Section 3.2. Section 4 contains the main contribution, namely the procedure for
constraint specialisation. Section 5 puts the procedure in the context of verification, explain-
ing the role of CHC integrity constraints. Section 6 contains the experimental evaluation of the
procedure. Finally Section 7 presents the conclusions.

The contributions of this work are as follows.

• We present a method for specialising the constraints in the clauses using query-answer
transformation and abstract interpretation (see Section 4).

• We demonstrate the effectiveness of the transformation by applying it to Horn clause veri-
fication problems (see Section 6).

Experimental results on verification problems show that this is an effective transformation,
propagating information both backwards from the statement to be proved, and forwards from the
Horn clauses. We show its effectiveness both in our own verification tools and as a pre-processor
to other Horn Clause verification tools. In particular, we run our specialisation procedure as
a pre-processor to our convex polyhedra analyser, to the state of the art verification tools like
QARMC [29, 67] and Eldarica [37].

2. Preliminaries

A constrained Horn clause (CHC) is a first order predicate logic formula of the form ∀(φ ∧
p1(X1) ∧ . . . ∧ pk(Xk) → p(X)) (k ≥ 0), where φ is a conjunction of constraints with respect to
some constraint theory, Xi, X are (possibly empty) vectors of distinct variables, p1, . . . , pk, p are
predicate symbols, p(X) is the head of the clause and φ ∧ p1(X1) ∧ . . . ∧ pk(Xk) is the body. The
arguments of a predicate are always regarded as a tuple; when we write p(X) or p(a), then X and
a stand for (possibly empty) tuples of variables and constants respectively.

A set of CHCs can be regarded as a CLP program. Unlike CLP, CHCs are not always re-
garded as executable programs, but rather as specifications or semantic representations of other
formalisms. However the semantic equivalence of CHC and CLP allows that techniques devel-
oped in one framework are applicable to the other. We follow the syntactic conventions of CLP
and write a Horn clause as p(X) ← φ, p1(X1), . . . , pk(Xk). In this paper we take the constraint
theory to be linear arithmetic with the relation symbols ≤,≥, <, > and =, but the contributions of
the paper are independent of the constraint theory.
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2.1. Interpretations and models
An interpretation of a set of CHCs is a truth assignment to each atomic formula p(a), where

p is a predicate and a is a tuple of constants from the constraint theory. An interpretation is
represented as a set of constrained facts of the form A ← φ where A is an atomic formula p(Z)
where Z is a tuple of distinct variables and φ is a constraint over Z. The constrained fact A ← φ
stands for the set of ground facts Aθ (where θ is a grounding substitution) such that φθ holds in
the constraint theory. An interpretation M is the set of all ground facts denoted by its elements.
M1 ⊆ M2 if the set of denoted ground facts of M1 is contained in the set of denoted ground
facts of M2. An interpretation M satisfies a CHC p0(X0) ← φ, p1(X1), . . . , pk(Xk), if M contains
constrained facts {pi(Xi)← φi | 0 ≤ i ≤ n}, and ∀(φ0 ← (φ ∧

∧n
i1 φi)) is true.

Minimal models. A model of a set of CHCs is an interpretation that satisfies each clause. A
set of CHCs P has a minimal model with respect to the subset ordering, denoted M[[P]]. Let
S D

P be the immediate consequences operator, an extension of the standard TP operator from logic
programming, extended to handle the constraint domain D [38, Section 4]. M[[P]], which is equal
to the least fixed point of S D

P , can be computed as the limit of the sequence of interpretations
∅, S D

P (∅), S D
P (S D

P (∅)), . . .. The abstract interpretation of CHC clauses presented in Section 3.1,
uses this sequence as the basis of the model computation. From now on, whenever we talk about
a model of Horn clauses, we refer to its minimal model.

Given two constraints φ and ψ over some constraint theory T , we say φ is stronger than ψ if
T |= ∀(φ→ ψ).

3. Methods and techniques

This section describes the techniques used in the constraint specialisation procedure, includ-
ing abstract interpretation over convex polyhedra and the query-answer transformation. These
are methods drawn from the literature; the contribution of the section is to present them in a form
suitable for integration in the procedure, and present an efficient implementation of the abstract
interpretation of CHCs.

3.1. Abstract Interpretation over the domain of convex polyhedra
Convex polyhedral analysis (CPA) [13] is a program analysis technique based on abstract

interpretation [11]. When applied to a set of CHCs P it constructs an over-approximation M′

of the minimal model of P, where M′ contains at most one constrained fact p(X) ← φ for
each predicate p. The constraint φ is a conjunction of linear inequalities, representing a convex
polyhedron. The first application of CPA to CHCs was by Benoy and King [4]. In this section we
develop an algorithm for CPA of CHCs incorporating a number of features enhancing precision
and efficiency.

We summarise briefly the elements of convex polyhedral analysis for CHC; further details
can be found in [13, 4]. Let Ak be the set of convex polyhedra of dimension k. Let P be a
set of CHCs containing n predicates, say p1, . . . , pn, where the arity of pi is ar(pi). The ab-
stract domain DP for P (or just D when P is clear from context) is the set of n-tuples of convex
polyhedra of the respective dimension, that is D = Aar(p1) × · · · × Aar(pn). Let the empty poly-
hedron of dimension k be denoted ⊥k (or just ⊥ when the dimension is clear from context).
Inclusion of polyhedra is a partial order on Ak and the partial order v on D is its point-wise
extension. The convex hull of two polyhedra d1, d2 ∈ A

k is denoted d1 t d2, and the least up-
per bound t of tuples in DP, say 〈d1, . . . , dn〉 and 〈e1, . . . , en〉, is 〈d1 t e1, . . . , dn t en〉. Given
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an element 〈d1, . . . , dn〉 ∈ DP, define the concretisation function γ such that γ(〈d1, . . . , dn〉) =

{〈p1(a1), . . . , pn(an)〉 | ai is a point in di, 1 ≤ i ≤ n}. Let an abstract semantic function be
FP : DP → DP satisfying the condition S D

P ◦ γ ⊆ γ ◦ FP. FP is monotonic with respect to
v and S D

P is the immediate consequences operator mentioned in Section 2. Let the increasing
sequence Y0,Y1, . . . be defined as follows. Y0 = ⊥,Yn+1 = FP(Yn). These conditions are sufficient
to establish that the limit of the sequence, say Y , satisfies γ(Y) ⊇ lfp(S D

P ) = M[[P]] [12].
SinceDP contains infinite increasing chains, the sequence can be infinite. The use of a widen-

ing operator for convex polyhedra is needed to ensure convergence of the abstract interpretation.
Define the sequence Z0 = Y0, Zn+1 = Zn∇FP(Zn) where ∇ is a widening operator for convex
polyhedra [13]. The conditions on ∇ ensure that the sequence stabilises; thus for some finite j,
Zi = Z j for all i > j and furthermore Z j is an upper bound for the sequence {Yi}. The value Z j

thus represents, via the concretisation function γ, an over-approximation of the least model of P.
Furthermore much research has been done on improving the precision of widening operators, for
example, widening-upto, or widening with thresholds [35, 36]. The widening upto operator (5T )
for convex polyhedra with respect to a set T of constraints (the threshold) is a widening operator
Z1 5T Z2 such that for all φ ∈ T , Z1 → φ∧ Z2 → φ implies that Z1 5T Z2 → φ. In other words the
widening-upto operator preserves as many of the constraints in the threshold as possible.

3.1.1. Algorithm for convex polyhedral approximation of CHCs

Algorithm 1: Naive Algorithm for Convex Polyhedral Analysis
Input: A set of CHCs P
Output: over-approximation of the minimal model of P

1 i← 0 ;
2 Z0 ← ⊥ ;
3 New← ⊥ ;
4 Changed ← {p | p is a predicate in P} ;
5 while Changed , ∅ do
6 foreach (p(X)← Body) ∈ P do
7 New← New t solve(p(X), Body,Zi)

8 Zi+1 ← Zi∇(New t Zi) ; /* Upper bound and widen */

9 Changed ← {p | p has changed in Zi+1} ;
10 i← i + 1

11 return Zi

Given the elements of convex polyhedral analysis summarised above, we present the algo-
rithm for computing a polyhedral approximation of a set of CHCs. A naive algorithm to compute
the limit of the sequence Z0,Z1,Z2, . . . is given in Algorithm 1. This naive algorithm is just a step-
ping stone to present the main algorithm in Figure 2. Given a clause p(X)← Body, the function
call solve(p(X), Body,Zi) returns a constrained fact p(X) ← φ, where φ is the result of solving
Body in the current approximation Zi (note that φ is a constraint in the theory of linear arithmetic).
More precisely, if Body = ψ, p1(X1), . . . , pr(Xr) then φ = (ψ∧φ1∧ . . .∧φr)|X , where pi(Xi)← φi

(for i = 1 . . . k) is a (renamed) constrained fact in Zi. We assume that the constraint theory admits
a projection operator, and we write φ|X to mean the projection of φ onto the variables X. That
is, if Y is the set of variables in φ and Z = Y \ X then the variables in Z do not occur in φ|X and
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φ|X ≡ ∃Z.φ.
Our algorithm, shown in Algorithm 2, incorporates generic optimisations for computing fixed

points using an ascending chain. We present it in some detail since we are not aware of imple-
mentations that incorporate the same range of optimisations and precision enhancements, al-
though all are drawn from the literature. The first step is to compute the strongly connected
components (SCCs) of the predicate dependency graph of the set of CHCs. Each component is a
set of (non-constraint) predicates; a group is either non-recursive (in which case it is a singleton)
or a set of mutually recursive predicates. The algorithm for computing SCCs returns the compo-
nents in topologically sorted order C1, . . . ,Cm, such that for each C j, no predicate in C j depends
on any predicate in Ck where k > j [71].

Algorithm 2: Algorithm for Convex Polyhedral Analysis
Input: A set of CHCs P
Output: over-approximation of the minimal model of P

1 C1, . . . ,Cm ← SCCs for P ;
2 T ← thresholds(P) ;
3 i← 0 ;
4 Z0 ← ⊥ ;
5 for j = 1 to m do
6 if C j is recursive then
7 Changed ←

⋃
l=1.. j Cl

8 while Changed , ∅ do
9 New← ⊥ ;

10 foreach (p(X)← Body) ∈ P where p ∈ C j do
11 if Body has changed in Changed then
12 New← New t solve(p(X), Body,Zi)

13 Zi+1 ← Zi∇T (New t Zi) ; /* Upper bound and widen */

14 Changed ← {p | p has changed in Zi+1} ;
15 i← i + 1

16 else
17 New← ⊥ ;
18 foreach (p(X)← Body) ∈ P where p ∈ C j do
19 New← New t solve(p(X), Body,Zi)

20 Zi+1 ← Zi t New ; /* Upper bound (no widening) */

21 i← i + 1

22 return Zi

The algorithm proceeds to solve the components in order. A fixed point is computed for
each SCC separately. A standard optimisation for recursive SCCs (the semi-naive optimisation)
[73] is to keep track of which predicates have a new solution in each iteration. The set Changed
records the predicates whose solution is changed. This optimisation allows a clause to be ignored
on an iteration, if no predicate in its body has changed since the previous iteration. Obviously
such a clause can contribute nothing new to the approximation. A recursive SCC is solved when
the set Changed is empty after some iteration. For non-recursive SCCs, no iteration is needed.
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The bodies of the clauses for the predicate in that SCC are solved with respect to the current
approximation and their solutions are added to the current approximation.

We apply a widening-upto operator ∇T where T contains a set of threshold constraints com-
puted at the start of the algorithm (Algorithm 2, line 2), which we define in the next paragraph. T
consists of facts that represent “guesses” for invariants for each predicate p. Any set T does not
alter the soundness result (always produces an over-approximation of the minimal modle of P)
of the Algorithm 2, but a good choice of thresholds can make a significant difference to the preci-
sion of the final result. In our implementation we adapt a method presented by Lakhdar-Chaouch
et al. [53]. In brief, the method collects constraints by iterating the abstract semantic function FP

three times starting from the “top” (>) element ofD, that is, the interpretation which assigns the
universal polyhedron (the polyhedron representing the whole space of a given dimension or true
constraint) to each predicate. The choice of three iterations is motivated by Lakhdar-Chaouch
et al.; however, we believe that further experimentation with choices of thresholds would be
fruitful.

We define the operation thresholds(P) as follows. First define a function which splits a con-
strained fact into a set of constrained facts having a single constraint. atomconstraints(p(Z) ←
φ) returns the set of constrained facts {p(Z) ← φi | φ = φ1 ∧ . . . ∧ φk, i = 1 . . . k} where φi are
atomic constraints. The function is extended to apply to sets of constrained facts.

atomconstraints(I) =
⋃

p(Z)←φ∈I

{atomconstraints(p(Z)← φ)}.

Then define the thresholds function as follows.

thresholds(P) = atomconstraints(F(3)
P (>))

Following this definition, the threshold constraints generated for our example program in
Figure 2 is shown in Example 1.

Example 1 (Threshold Constraints).

l(A,B) :- A=1. l(A,B) :- B=0. l(A,B) :- B=1.

l(A,B) :- A=2. l(A,B) :- B=2.

false :- true.

3.2. The query-answer transformation

In Section 1.1 we discussed the origins and motivation of the query-answer transformation.
In the following, we define it formally. We assume that, for each atom A = p(t), Aa and Aq

represent the atoms pa(t) and pq(t) respectively.

Definition 1 (Query-answer program). Given a set of CHCs P and an atom A, the (left-) query-
answer clauses for P with respect to A, denoted Pqa

A or just Pqa, are as follows.

• (Answer clauses). For each clause H ← φ, B1, . . . , Bn (n ≥ 0) in P, Pqa contains the clause
Ha ← φ,Hq, Ba

1, . . . , B
a
n.

• (Query clauses). For each clause H ← φ, B1, . . . , Bi, . . . , Bn (n ≥ 0) in P, Pqa contains the
following clauses:
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Bq
1 ← φ,Hq.
· · ·

Bq
i ← φ,Hq, Ba

1, . . . , B
a
i−1.

· · ·

Bq
n ← φ,Hq, Ba

1, . . . , B
a
n−1.

• (Goal clause). Aq ← true.

The clauses in Pqa encode a left-to-right, depth-first computation of the query← A for CHC
clauses P (that is, the standard CLP computation rule, SLD extended with constraints). This is
a complete proof procedure (produces a proof for each provable statement), assuming that all
clauses matching a given call are explored in parallel. (Note: the incompleteness of standard
CLP proof procedures arises due to the fact that clauses are tried in a fixed order). We can also
define a query-answer transformation which encodes atoms in a right-to-left fashion. Since Pqa

above encodes atoms in a left-to-right fashion, we call such a tranformation (left-) query answer
transformation for clarity.

The answer clauses arise since there is an answer for the head predicate H if it was queried
and all the body atoms have answers and φ holds. The query clauses arise since given a clause
H ← φ, B1, . . . , Bn (n ≥ 0), the ith body atom Bi can only be queried if the head H is queried, φ
holds and all the body atoms up to i− 1 have answers (in the left-right computation). Finally, the
goal clause asserts that the goal A is queried.

The size of query-answer program is quadratic with respect to the size of the original pro-
gram. This is because we generate n query-answer clauses for each clause in the original program
with n non-constraint atoms. So if we have m clauses in the original program and the maximum
number of non-constraint atom in any clause is n, then the query-answer program contains at
most n ∗ m + 1 clauses.

Example 2 (Query-answer transformation). For a given predicate p, we represent pa and pq

by p a and p q respectively in textual form. Given the program in Figure 2, its query-answer
transformation following the Definition 1 is shown below. Note that the identifier preceding each
clause shows the identifier of the original clause from where it is derived.

%answer clauses

c1. l_a(A,B) :- l_q(A,B), A=1, B=0.

c2. l_a(A,B) :- l_q(A,B), A=C+D, B=D+1, l_a(C,D).

c3. false_a :- false_q, B>A, l_a(A,B).

%query clauses

c2. l_q(A,B) :- l_q(C,D), C=A+B, D=B+1.

c3. l_q(A,B) :- false_q, B>A.

%goal clause

false_q :- true.

Query-answer clauses capture the mutual dependencies of top-down and bottom-up evalua-
tion, since the queries and answers are defined in a single set of clauses. For example, given a
clause p ← q, p, the call to p in the body depends on the answers for q (in a top-down left-right
evaluation). However the answers for q depend on the calls to p in the head, since q is called from
p. Top-down or bottom-up evaluation in isolation would not capture such mutual dependencies
between calls and answers.
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The relationship of the model of the clauses Pqa to the computation of the goal← A in P is
expressed by the following property1. An SLD-derivation in CLP is a sequence G0,G1, . . . ,Gk

where each Gi is a goal← φ, B1, . . . , Bm, where φ is a constraint and B1, . . . , Bm are atoms. In a
left-to-right computation, Gi+1 is obtained by resolving B1 with a program clause. The model of
Pqa captures (approximates) the set of atoms that are “called” or “queried” during the derivation,
together with the answers (if any) for those calls. This is expressed precisely by Property 1.

Property 1 (Correctness of query-answer transformation). Let P be a set of CHCs and A be an
atom. Let Pqa be the query-answer program for P wrt. A. Then

(i) if there is an SLD-derivation G0, . . . ,Gi where G0 = ← A and Gi = ← φ, B1, . . . , Bm,
then Pqa |= ∀(Bq

1 ← φ|vars(B1));

(ii) if there is an SLD-derivation G0, . . . ,Gi where G0 = ← A, containing a sub-derivation
G j1 , . . . ,G jk , where G ji ← φ′, B,B′ and G jk = ← φ,B′, then Pqa |= ∀(Ba ← φ|vars(B)).
(This means that the atom B in G ji was successfully answered, with answer constraint
φ|vars(B), where B′ is a conjunction of atoms).

(iii) As a special case of (ii), if there is a successful derivation of the goal ← A with answer
constraint φ then Pqa |= ∀(Aa ← φ).

The correctness of query-answer transformation has already been established by several au-
thors in the logic programming literature, for example, Nilsson [63] and Debray et al. [20].

4. Specialisation by constraint strengthening

We next present a procedure for specialising CHCs. In contrast to classical specialisation
techniques based on partial evaluation with respect to a goal, the specialisation does not unfold
the clauses at all; rather, it computes a specialised version of each clause, in which the constraints
from the goal are propagated top-down and answers are propagated bottom-up.

We first make precise what is meant by “specialisation” for CHCs. Let P be a set of CHCs
and let A be an atomic formula. The specialisation of P with respect to A is a set of clauses
PA such that for every constraint φ over the variables of A, P |= ∀(A ← φ) if and only if
PA |= ∀(A ← φ). This is a very general definition that allows for many transformations. In
practice we are interested in specialisations that eliminate logical consequences of P that have
no relevance to A.

For each clause H ← B in P, PA contains a new clause H ← φ,B where φ is a constraint.
If the addition of φ makes the clause body unsatisfiable, it is the same as removing the clause,
though removal is not essential to the procedure. Clearly PA may have fewer logical conse-
quences than P but our procedure guarantees that it preserves the logical consequences of P with
respect to the (ground instances of) A. The procedure is summarised as follows: the inputs are a
set of CHCs P and an atomic formula A.

1. Compute a query-answer transformation of P with respect to A, denoted Pqa, containing
predicates pq and pa for each predicate p in P.

1 Note that the model of Pqa might not correspond exactly to the calls and answers in the SLD-computation, since
the CLP computation treats constraints as syntactic entities through decision procedures and the actual constraints could
differ.
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2. Compute an over-approximation M of the model of Pqa.
3. Strengthen the constraints in the clauses in P by adding constraints from the answer pred-

icates in M.

Next we will explain each step in detail.

4.1. The query-answer transformation

This was presented in Section 3.2. We perform a query-answer transformation of P with
respect to the goal false. We call the result Pqa. It follows from Property 1(iii) that if false is
derivable from P then falsea is derivable from Pqa.

4.2. Over-approximation of the model of Pqa

Abstract interpretation of Pqa yields an over-approximation of M[[Pqa]], say M, containing
constrained facts for the query and answer predicates. These represent the calls and answers
generated during all derivations starting from the goal A. In our experiments we use a convex
polyhedral approximation (CPA) of M[[Pqa]], as described in Section 3.1. Using CPA, we derive
the following constrained facts for the program in Example 2.

Example 3 (Over-approximation of the model of the program in Example 2).

false_q :- true.

l_(A,B) :- true.

l_a(A,B) :- A>=1, A-B>=0, B>=0.

For all predicates in a program for which the model contains no constrained fact, we assume
that there is a constrained fact for that predicate whose right hand side contains an unsatisfiable
constraint.

4.3. Strengthening the constraints in P

We use the information in the model of Pqa, say M, to specialise the original clauses in P.
Suppose M contains constrained facts pq(X) ← φq and pa(X) ← φa. (If there is no constrained
fact p∗(X)← φ for some p∗ then we consider M to contain p∗(X)← false, as mentioned above).

Given such a set M, define γM to be the mapping from atoms to constraints such that
γM(p∗(X)) = φ for each constrained fact p∗(X)← φ, where ∗ is a or q.

Definition 2 (Strengthened clauses PA from a model.). Let P be a set of CHCs, A be a goal and
Pqa be the query-answer transformation of P with respect to A. Let M be a model of Pqa defined
by a set of constrained facts. Then PA contains the following clauses:

PA = {p(X)← φ, φ0, φ1, . . . , φn, p1(X1), . . . , pk(Xk) | p(X)← φ, p1(X1), . . . , pk(Xk) ∈ P,
φ0 = γM(pa(X)), φi = γM(pa

i (Xi)),
SAT(φ ∧ φ0 ∧

∧n
i=1 φi) }

The clauses whose body constraints are unsatisfiable are removed from PA, since they cannot
contribute to feasible derivations (a Horn clause derivation whose constraints are unsatisfiable)
and do not contribute to the minimal model of PA. Here we assume that there is exactly one
constrained fact in M for each predicate pa, pa

1, . . . , pa
n. Due to the choice of domain for ab-

stract interpretation, we get one constrained fact (a convex polyhedron) for each predicate in
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the program. Using a richer domain such as the power set of convex polyhedra, we could ob-
tain disjunctive constraints, which could be eliminated from the specialised clauses by program
transformation. For example, the clause p(X)← (X > Y ∨ Y < X), q(Y) can be transformed into
p(X)← X > Y, q(Y) and p(X)← Y < X, q(Y). However, that could cause blow-up in the number of
clauses generated.

Note that wherever M contains constrained facts pa(X) ← φa and pq(X) ← φq, we have
φa → φq since the answers for p are always stronger than the calls to p. Thus it suffices to
add only the answer constraints to the clauses in P and we can ignore the model of the query
predicates. A special case of this is where M contains a constrained fact pq(X)← φq but there is
no constrained fact for pa(X), or in other words M contains the constrained fact pa(X) ← false
(meaning that no ground atom exists for the predicate pa in M). This means that all derivations
for p(X) fail or loop in P and so adding the answer constraint false for p eliminates looping
derivations for p.

Example 4 (Constraint specialisation). Using the model of the query-answer transformed pro-
gram presented in Example 3, the program in Figure 2 can be strengthened as follows:

c1. l(A,B) :- A=1, B=0, A>=1, A-B>=0, B>=0.

c2. l(A,B) :- A=C+D, B=D+1, A>=1, A-B>=0, B>=0, C>=1, C-D>=0, D>=0, l(C,D).

c3. false :- B>A, A>=1, A-B>=0, B>=0, l(A,B).

The constraints in the clauses are strengthened by the addition of extra constraints from the
model, which are underlined. It can be seen that the constraints in the body of integrity constraint
(c3) are unsatisfiable, and thus c3 can be eliminated.

Specialisation by strengthening the constraints preserves the answers of the goal with respect
to which the query-answer transformation was performed. In particular, we have the following
property.

Property 2 (Soundness of constraint specialisation). If P is a set of CHCs and PA is the set of
clauses obtained by strengthening the clause constraints as just described, then P |= (A ← φ) if
and only if PA |= (A← φ).

Proof. The proof follows from the standard Theorems (Theorem 6.0.1, Part 4 and Theorem
6.0.1, Part 2 of [39]) and Lemmas (Lemma 3.1 of [59]) from the literature in constraint logic
programming.

The specialisation and analysis are separate in our approach. More complex algorithms in-
tertwining them can be envisaged, though the benefits are not clear. Iteration of our procedure
yields further specialisation, as our experiments confirm.

5. Application to the CHC verification problem

In this section we will briefly discuss the origin of Horn clauses in verification problems and
then discuss the application of our constraint specialisation in Horn clause verification.

5.1. Origin of Horn clauses in program verification problems

CHCs provide a logical formalism suitable for expressing the semantics of a variety of pro-
gramming languages (imperative, functional, concurrent, etc.) and computational models (state
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machines, transition systems, big- and small-step operational semantics, Petri nets, etc.). Pro-
gram verification usually refers to verification of source programs rather than some intermediate
semantic form. Instead of devising verification procedure for each source language (which is
a difficult process) we devise a verification procedure for CHCs and then translate source lan-
guages to it, saving time and effort. The literature on program analysis and verification contains
several methods for generating CHCs from an imperative program, which fall into two broad
categories.

1. Specialising an interpreter: The translation is usually obtained through specialisation of
an interpreter (equivalently partial evaluation). Let Pimp be an imperative program written
in language L and I be an interpreter of L written in some language (in Horn logic as Horn
clauses). Partial evaluation or specialisation of I with respect to Pimp produces a specialised
interpreter Is for Pimp. Is can be regarded as the translation of Pimp to the language in which
the interpreter is written which preserves the semantics of Pimp. This approach is taken by
Peralta et al. [64] and De Angelis, Fioravanti, Pettorossi and Proietti [19].

2. Hoare style proof rules: The translation is obtained by applying the proof rules to obtain
logical proof subgoals whose satisfiability implies correctness of the original program.
This approach is taken by Gurfinkel et al. [33], Grebenshchikov, Lopes, Popeea and Ry-
balchenko [30] and McMillan and Rybalchenko [61].

In both of these, the program semantics can be small-step, big-step or mixed. In the first
category this is specified by an interpreter whereas in the second case it is specified by proof rules.
The outcome of the translation in both cases is a set of Horn clauses often called verification
conditions in the literature [19, 61]. There are also other ad-hoc techniques for translation, for
example, [21, 41].

We illustrate this via the example program from Figure 1, which is taken from [16]. Suppose
we would like to prove the Hoare triple {a = 1, b = 0} Loop add {a ≥ b}. This means starting
from a state satisfying {a = 1, b = 0}, if we execute Loop add and if it terminates then the
resulting state satisfies {a ≥ b}. Let l(a,b) be an unknown loop invariant for the while loop
in the program Loop add, the above triple holds if the verification conditions in Figure 1b are
satisfiable, that is, there exists an interpretation that satisfies each clause.

These conditions are pure logical formulas and are indeed a set of recursive Horn clauses.
Thus, the problem of proving whether the program is safe (equivalently has a model) is reduced
to checking whether this set of Horn clauses is satisfiable. Using CLP syntax the verification
conditions can be written as shown in Figure 2. Each clause in this example is assigned an
identifier (for example c1 to c3) in order to refer them later. The clause c3 is called an integrity
constraint.

5.2. CHC verification
In this section, we discuss the application of our constraint specialisation in Horn clause

verification. We assume that there is a distinguished predicate symbol false in P which is al-
ways interpreted as false. In practice the predicate false only occurs in the head of clauses;
we call clauses whose head is false integrity constraints, following the terminology of deduc-
tive databases. Thus the formula φ1 ← φ2 ∧ p1(X1), . . . , pk(Xk) is equivalent to the formula
false← ¬φ1 ∧ φ2 ∧ p1(X1), . . . , pk(Xk). The latter might not be a CHC (e.g. if φ1 contains =) but
can be converted to an equivalent set of CHCs by transforming the formula ¬φ1 and distributing
any disjunctions that arise over the rest of the body. For example, the formula X = Y ← p(X,Y)
is equivalent to the set of CHCs {false← X > Y, p(X,Y), false← X < Y, p(X,Y)}.
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Integrity constraints can be seen as safety properties (nothing bad will happen, which we will
define formally in the next section). For example if a set of CHCs encodes the behaviour of a
system, the bodies of integrity constraints represent unsafe states. Thus proving safety consists
of showing that the bodies of integrity constraints are false in all models of the CHC clauses. In
Figure 2 the verification problem focuses on proving that the integrity constraint is satisfied. This
can only happen if the body of c3 is unsatisfiable. A program is considered safe if its verification
conditions have a model.

5.3. The CHC verification problem.
To state this more formally, given a set of CHCs P, the CHC verification problem is to check

whether there exists a model of P. If so we say that P is safe. Obviously any model of P
assigns false to the bodies of integrity constraints. We restate this property in terms of the logical
consequence relation. Let P |= F mean that F is a logical consequence of P, that is, that every
interpretation satisfying P also satisfies F.

Lemma 1. P has a model if and only if P 6|= false.

This lemma holds for arbitrary interpretations (only assuming that the predicate false is inter-
preted as false), uses only the textbook definitions of “interpretation” and “model” and does not
depend on the constraint theory. The verification problem can be formulated deductively rather
than model-theoretically. We can exploit proof procedures for constraint logic programming [38]
to reason about the satisfiability of a set of CHCs.

5.3.1. Proof Techniques for Horn clauses
The techniques that we use in this paper are:

• Proof by over-approximation of the minimal model: Given a set of CHCs, its minimal
model M[[P]] is equivalent to the set of atomic consequences of P [58]. That is, P |= p(a)
if and only if p(a) ∈ M[[P]]. Therefore, the CHC verification problem for P is equivalent
to checking that false < M[[P]]. It is sufficient to find a set of constrained facts M′ such
that M[[P]] ⊆ M′, where false < M′. This technique is called proof by over-approximation
of the minimal model.

• Proof by specialisation: In our context we use specialisation to focus the verification prob-
lem on the formula to be proved. More specifically, we specialise a set of CHCs with
respect to a “query” to the atom false; thus the specialised CHCs entail false if and only
if the original clauses entailed false. The constraint strengthening procedure described in
Section 4 is our method of specialisation. So whenever we refer to specialisation we refer
to this method unless otherwise stated.

5.3.2. Analysis of the specialised clauses
Having specialised the clauses with respect to false, it may be that the clauses Pfalse do not

contain a clause with head false. In this case Pfalse is safe, since clearly this is a sufficient
condition for Pfalse 6|= false. This is the case for our example program since the body of the
clause c3 is unsatisfiable after constraint strengthening, it is removed from the set of specialised
clauses.

If this check fails we still do not know whether P has a model. In this case we can perform
the convex polyhedral analysis on the clauses Pfalse. As the experiments later show, safety is
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often provable by checking the resulting model; if no constrained fact for false is present, then
Pfalse 6|= false. If safety is not proven, there are two possibilities: the approximate model is not
precise enough, but P has a model, or there is a proof of false. Refinement techniques could be
used to distinguish these, but this is not the topic of this paper.

In summary, our experimental procedure for evaluating the effectiveness of constraint spe-
cialisation contains two steps. Given a set of CHCs P with integrity constraints: (1) Compute a
specialisation of P with respect to false yielding Pfalse. If Pfalse contains no integrity constraints,
then P is safe. (2) If Pfalse does contain integrity constraints, perform a convex polyhedra analy-
sis of Pfalse. If the resulting approximation of the minimal model contains no constrained fact for
the predicate false, then Pfalse is safe and hence P is safe. If we find a concrete feasible derivation
for false then we conclude that P is unsafe. Otherwise, P is possibly unsafe. Please refer to [46]
for deriving traces using convex polyhedral approximation.

6. Experimental evaluation

Table 1 presents experimental results of applying our constraint specialisation to a number
of Horn clause verification benchmarks taken from the repository of Horn clauses [5] and other
sources including [28, 40, 32, 6, 17]. The columns CPA, QARMC [29] and Eldarica [37] present
the results of verification using convex polyhedra, QARMC and Eldarica respectively, whereas
columns CS + CPA, CS + QARMC and CS + Eldarica show the result of running constraint
specialisation followed by CPA, QARMC and Eldarica respectively. The symbol “-” is used in
the table to indicate that the result is not significant in the given case. The experiments were
carried out on an Intel(R) X5355 quad-core (@ 2.66GHz) computer with 6 GB memory running
Debian 5. We set 5 minutes of timeout for each experiment. The specialisation procedure is
implemented in the tool called Rahft which is publicly available from https://github.com/

bishoksan/RAHFT/. The tool offers a simple command line interface and accepts options for
constraint specialisation. For this purpose it can be run using the command: ./rahft input

-sp output where the input is a set of CHCs and output is a file name to store the specialised
CHCs and -sp is an option for clause specialisation. The benchmark programs are available from
https://github.com/bishoksan/RAHFT/tree/master/benchmarks_scp.

The results show that constraint specialisation is effective in practice. We report that 109
out of 218, that is 50%, of the problems are solved by constraint specialisation alone. When
used as a pre-processor for other verification tools, the results show improvements on both the
number of instances solved and the solution time. Using our tool, we report approximately 47%
increase in the number of instances solved and twice as fast on average. Using QARMC, we
report 13% increase in the number of instances solved and 5 times faster on average. Similarly
using Eldarica, we report approximately 12% increase in the number of instances solved and
almost 4 times faster on average. It is important to note that there is no refinement iteration in
CPA as there is in QARMC and Eldarica.

CPA CS + CPA QARMC CS + QARMC Eldarica CS + Eldarica
solved (safe/unsafe) 61 (48/13) 162 (144/18) 178 (141/37) 205 (171/34) 159(135/24) 206 (175/31)
unknown / timeout 144/13 49/7 -/40 -/13 -/59 -/12
total time (secs) 2317 1303 13367 2613 10805 3235
average time (secs) 10.62 5.97 61.31 11.98 50.02 14.97
%solved 27.98 74.31 81.65 94.04 73 95.3

Table 1: Experiments on a set of 218 (181 safe and 37 unsafe) CHC verification problems with a timeout of five minutes
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The (perhaps surprising) effectiveness of this relatively simple combination of constraint spe-
cialisation and convex polyhedral analysis is underlined by noting that it can solve problems for
which more complex methods have been proposed. For example, apart from the many exam-
ples from the Horn clause verification benchmarks that require refinement using CEGAR-based
approaches, the technique solves the “rate-limiter” and “Boustrophedon” examples presented
by Monniaux and Gonnord [62] (Section 5) (directly encoded as Horn clauses); their approach,
also based on convex polyhedra, uses bounded model checking to achieve a partitioning of the
approximation, while other approaches to such problems use trace-partitioning and look-ahead
widening.

It is possible to strengthen constraints in the clauses using the model of the original program
(denote it by CPA’) rather than its query-answer transformed one. The effect of such a speciali-
sation (CS + CPA’) on these set of benchmarks is same as applying CPA directly on the original
programs, but such a specialisation may be a useful pre-processing for other tools. For example,
the following program (a variant of our example program) is not solved by such a combination
(CS + CPA’) but our current approach does (CS + CPA).

false :- A=1, B=0, l(A,B).

l(A,B) :- C=A+B, D=B+1, l(C,D).

l(A,B) :- B>A.

We were able to solve almost 100 more problems with our proposed approach. Therefore the
role of query-answer transformation is crucial for propagating constraints in verification prob-
lems. As mentioned earlier, our specialisation procedure can be iterated which yields further
specialisation of the clauses. By iterating the procedure, we were able to solve 12 more prob-
lems. After second iteration, we observed that the same program was produced in most of the
cases indicating that the successive iterations do not produce any further specialisation.

6.1. Additional experiments on SV-COMP-15 benchmarks
We chose a subset of 132 problems, written in C, from SV-COMP 20152 [7]. This set contains

benchmarks from the categories which were not reported in our experiments before such as
recursive benchmarks which needs recursive analysis. Additionally it contains some benchmarks
from Loop category such as loop-acceleration, loop-lit and loop-new. We used SeaHorn [34, 33],
a verification framework based on LLVM, for generating Horn clause from C programs. SeaHorn
first compiles C to LLVM intermediate representation (LLVM IR), also known as bitcode using
clang, a C-family front-end for LLVM3. The bitcode is further simplified and optimized reusing
the vast amount of work done on LLVM (e.g. function inlining, dead code elimination, CFG
simplifications etc.) whose purpose is to make the verification task easier. Gurfinkel et al. [33]
have shown that some of the problems are solved by these transformations only. The resulting
bitcode is translated to Horn clauses using different semantics for example small step, large block
encoding etc. More details can be found in [34, 33]. The benchmark programs are available from
https://github.com/bishoksan/RAHFT/tree/master/benchmarks_scp. The results are
summarised in the Table 2. They again show that our method, the constraint specialisation, is in
fact effective in practice since we can solve 18% more problems using it as a pre-processor to
our convex polyhedra tool.

2http://sv-comp.sosy-lab.org/2015/benchmarks.php
3http://clang.llvm.org/
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CPA CS + CPA
solved (safe/unsafe) 37 (14/23) 61 (26/35)
unknown 95 71
average time (secs.) 0.51 0.50
solved (%) 28 46

Table 2: Experimental results on 132 CHC verification problems with a timeout of five minutes

7. Conclusion and Future Work

We introduced a method for specialising the constraints in constrained Horn clauses with
respect to a goal. The method is based a combination of techniques that have already shown their
usefulness, especially abstract interpretation and query-answer transformation. The particular
combination of techniques we chose was arrived at by experimentation and analysis of the needs
of the problem. The approach propagates constraints globally, both forwards and backwards, and
produces explicit invariants from the original clauses.

We applied the method to program verification problems encoded as constrained Horn clauses.
Experiments showed firstly that constraint specialisation alone is an effective verification tool.
Secondly, it can be applied as a pre-processor, improving the effectiveness of other verification
tools. It remains to be checked if the solver like VeriMap would benefit from our specialisation.

The effectiveness of the procedure is at first sight somewhat surprising. Its effectiveness
comes from the fact that it focuses on full exploitation of the available information, propagating
information simultaneously top-down and bottom-up, and the use of powerful analysis tech-
niques based on abstract interpretation capable of discovering useful invariants. Moreover the
addition of the widening-upto method with threshold generation plays an important role in the
procedure. Care was taken to implement the procedures efficiently.

The technique is independent of the constraint theory underlying the clauses and the abstract
domain for analysis, although we only experimented so far with the domain of linear arithmetic
constraints, and the domain of convex polyhedra.

Future work. There is potential for applying this technique in future work whenever explicit
constraints need to be extracted from clauses. One such instance is in program debugging since
more specific information may make errors in the original program apparent. Another is as a pre-
processor in program specialisation where knowledge of the call context of each program point
could enable specialisations which are not otherwise obviously available. Finally, termination
and resource analysis could benefit from constraint specialisation, since these might enable better
ranking functions to be discovered, proving decrease of some expression in each loop.

The query-answer transformation has several variations, which can give differing precision
when combined with abstract interpretation. For instance, more refined query predicates of the
form pq

i, j could be generated representing calls to the ith atom in the body of clause j [26].
Secondly, the left-to-right computation could be replaced by right-to-left or any other order. The
success or failure of a goal is independent of the computation rule; hence we could generate
answers using other computation rules, or combining computation rules [27]. While different
computation rules do not affect the model of the answer predicates, more effective propagation
of constraints during program analysis, and thus greater precision, can sometimes be achieved
by varying the computation rule.
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