
Under consideration for publication in Theory and Practice of Logic Programming 1

Tree dimension in verification of constrained
Horn clauses

Bishoksan Kafle

The University of Melbourne
E-mail: bishoksank@unimelb.edu.au

John P. Gallagher

Roskilde University and IMDEA Software Institute

E-mail: jpg@ruc.dk

Pierre Ganty

IMDEA Software Institute
Email: pierre.ganty@imdea.org

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

In this paper we show how the notion of tree dimension can be used in the verification
of constrained Horn clauses (CHCs). The dimension of a tree is a numerical measure of
its branching complexity and the concept here applies to Horn clause derivation trees.
Derivation trees of dimension zero correspond to derivations using linear CHCs, while
trees of higher dimension arise from derivations using non-linear CHCs. We show how to
instrument CHCs predicates with an extra argument for the dimension, allowing a CHC
verifier to reason about bounds on the dimension of derivations. Given a set of CHCs
P , we define a transformation of P yielding a dimension bounded set of CHCs P≤k. The
set of derivations for P≤k consists of the derivations for P that have dimension at most
k. We also show how to construct a set of clauses denoted P>k whose derivations have
dimension exceeding k. We then present algorithms using these constructions to decompose
a CHC verification problem. One variation of this decomposition considers derivations of
successively increasing dimension. The paper includes descriptions of implementations and
experimental results.

1 Introduction

The dimension of a tree, also known as the Horton-Strahler number of a tree1 is

a numerical measure of a tree’s branching complexity. The concept was originally

applied to analyse flows in rivers and their tributaries and to other naturally occur-

ring tree structures (Esparza et al. 2014). Recently it has found several applications

in program analysis and verification (Esparza et al. 2010; Reps et al. 2016). In this

paper we apply the notion of tree dimension in the verification of CHCs, where

1 https://en.wikipedia.org/wiki/Strahler number

2 Kafle, Gallagher and Ganty

the trees whose dimension we consider are derivation trees. Derivation trees of di-

mension zero correspond to derivations using linear CHCs, while trees of higher

dimension arise from derivations using non-linear CHCs.

The verification of a property of a set of CHCs often involves implicitly the

set of all derivation trees for that set. For example, a safety property is typically

formalised as the consistency of a set of clauses, which amounts to establishing

the absence of a derivation of a contradiction and requires the consideration of all

derivations for the given clauses. CHCs provide a convenient representation for the

statement of invariant properties of various systems including imperative programs

(Grebenshchikov et al. 2012), which is again usually formalised as the absence

of a derivation of some statement representing the violation of the invariant. An

automated tool for finding such derivations might benefit from a divide-and-conquer

strategy, decomposing the set of all derivations into smaller more manageable sets.

Tree dimension provides one such approach to decompose verification problems

that involve the set of all derivations. Given a set of CHCs P and a dimension

k ≥ 0, we define a transformation yielding a set of CHCs P≤k whose derivations

have dimension of at most k. We can also obtain the complementary set of clauses

(called P>k) whose derivation trees have dimension at least k+ 1. Each such set of

clauses (P≤k and P>k) represents an under-approximation of the original set P in

the sense that they give rise to a subset of P ’s derivations.

Why might decomposition by dimension be useful? Firstly, the overall verification

problem is reduced into simpler, but still non-trivial parts, each with an infinite

number of derivations. By contrast, if one of the parts were finite, say the set of

derivations of bounded depth, then the complementary part would arguably be no

simpler than the original. Secondly, the particular properties of bounded dimension

can be exploited. Any dimension-bounded set of clauses P≤k can be linearised, while

preserving key semantic properties including consistency (Kafle et al. 2016). This

allows the use of tools designed and optimised for linear clauses.

We also show how to reason directly about the dimension of derivations using any

CHC verification system, by instrumenting the clauses, adding an extra argument

to each predicate representing the dimension.

In Section 2 we introduce the technical background of the paper. We review the

notion of tree dimension and introduce the syntax and semantics of CHCs. We relate

the concept of tree dimension to CHCs derived from imperative programs in Section

3; and present a method for instrumenting CHCs predicates with an extra argument

for the dimension and verify dimension related properties using the standard CHCs

solvers. In Section 3.4 we present partial evaluation algorithms to construct two

versions of dimension-bounded clauses constructed from a given set of CHCs: one

whose derivations are bounded in dimension from above and one whose derivations

are bounded from below. The dimension-bounded sets of clauses are exploited by

verification algorithms presented in Section 4. Section 5 contains a description of a

prototype implementation and discusses the results obtained. Section 6 presents a

discussion of related work as well as the role of dimension in using CHCs for safety

verification of imperative programs. Finally, Section 7 concludes.

Tree dimension in verification of constrained Horn clauses 3

2 Preliminaries and formal background

A labelled tree c(t1, . . . , tk) (k ≥ 0) is a tree whose nodes are labelled by identifiers,

where c is the label of the root and t1, . . . , tk are labelled trees, the children of the

root. In this paper, all trees we consider are finite.

The dimension of a tree is a measure of its non-linearity; for example a linear tree

(whose nodes have at most one child) has dimension zero while a complete binary

tree has dimension equal to its height. Formally, the dimension of a tree is defined

as follows.

Definition 1 (Tree dimension adapted from Esparza et al. (2007))

Given a labelled tree t = c(t1, . . . , tk), the tree dimension of t represented as dim(t)

is defined as follows:

dim(c(t1, . . . , tk)) =


0 if k = 0

dim(ti) if k > 0 ∧ |{i | ∀j : dim(tj) ≤ dim(ti)}| = 1

dim(ti) + 1 if k > 0 ∧ |{i | ∀j : dim(tj) ≤ dim(ti)}| > 1

Figure 1 shows a labelled tree t = c3(c2(c2(c1, c1), c1)) (each ci is a node label)

in graphical form and the dimension of each of its subtrees. The dimension of the

root node (1 in this case) is the dimension of the tree.

c1

c2 c1

c2

c1

c3

0

1 0

1

0

1

(a) (b)

Fig. 1. (a) a labelled tree c3(c2(c2(c1, c1), c1)) and (b) the dimension of each subtree.

A constrained Horn clause (CHC) is a first-order predicate logic formula of the

form ∀x0 . . .xk(p1(x1)∧. . .∧pk(xk)∧φ→ p0(x0)), where φ is a finite conjunction of

constraints with respect to some constraint theory, x0, . . . ,xk are (possibly empty)

tuples of variables, p0, . . . , pk are predicate symbols, p0(x0) is the head of the clause

and p1(x1)∧. . .∧pk(xk)∧φ is the body. Following the conventions of Constraint Logic

Programming (CLP), such a clause is written as p0(x0) ← φ, p1(x1), . . . , pk(xk).

An atomic formula, or simply atom, is a formula p(x) where p is a predicate symbol

4 Kafle, Gallagher and Ganty

Fn =

{
n if n = 0 or 1

Fn−1 + Fn−2 if n > 1

c1. fib(A,B):- A>=0, A=<1, B=A.
c2. fib(A,B):- A>1, A2=A-2,

A1=A-1, fib(A2,B2),
fib(A1,B1), B=B1+B2.

c3. false:- A>5, fib(A,B), B<A.

Fig. 2. Fibonacci function (left), its encoding as CHCs and a property Fib (right).

and x a tuple of arguments. Atoms are sometimes written as A, B or H, possibly

with sub- or superscripts.

A clause is called non-linear if it contains more than one atom in the body,

otherwise it is called linear. A set of CHCs P is called linear if P only contains

linear clauses, otherwise it is called non-linear. Integrity constraints are a special

kind of clause whose head is the predicate false. A set of constrained Horn clauses

can also be regarded as a constraint logic program, though in this paper CHCs

are not regarded as executable programs; we are concerned with verifying logical

properties of CHCs.

For concrete examples of CHCs we use Prolog syntax and typewriter font, writing

the implication← as :- and using capital letters for variable names. The constraints

can also be intermixed with the body atoms. Figure 2 (right) contains an example

of a set of constrained Horn clauses, called Fib, which encodes the Fibonacci func-

tion. The first two clauses c1 and c2 define the Fibonacci function and clause c3
represents a property of the Fibonacci function expressed as an integrity constraint.

c2 is a non-linear clause while c1 and c3 are linear. Each CHC in a given set of

CHCs is associated with an identifier, as illustrated in Figure 2.

CHC semantics. The semantics of CHCs is obtained using standard concepts from

predicate logic semantics. An interpretation assigns to each predicate a relation over

the domain of the constraint theory T, whereas constraints have interpretations in

the theory itself. In particular, the predicate false is always interpreted as false.

An interpretation satisfies a set of formulas if each formula in the set evaluates to

true in the interpretation in the standard way. In particular, a model of a set of

CHCs is an interpretation in which each clause evaluates to true. A set of CHCs P

is consistent if and only if it has a model. Otherwise it is inconsistent.

In the algorithms developed in Section 4, we consider only interpretations rep-

resentable within the constraint theory by a set of constrained facts of the form

p(x)← φ where x is a tuple of distinct variables and φ a constraint (free variables of

φ are subset of x) in the constraint theory underlying the CHCs. There is exactly one

constrained fact for each predicate p in the set of CHCs. Such a constrained fact de-

fines the interpretation of p as the relation {xθ | xθ is ground, and φθ holds in T}.
We call such a set of constrained facts a syntactic interpretation, and if it is a

model, we call it a syntactic model. If a set of CHCs has a syntactic model, then

it has a model, but the reverse is not necessarily true. In particular, a syntactic

interpretation satisfies a clause A0 ← φ,A1, . . . , Ak if for constrained facts (with

Tree dimension in verification of constrained Horn clauses 5

variables suitably renamed) A0 ← φ0, A1 ← φ1, . . ., Ak ← φk in the interpretation,

the formula φ ∧ φ1 ∧ . . . ∧ φk → φ0 holds in the underlying constraint theory.

In some works e.g. (Bjørner et al. 2013; McMillan and Rybalchenko 2013) a

syntactic model is also called a solution and we use these terms interchangeably in

this paper when the context is clear. When modelling safety properties of systems

using CHCs, the consistency of a set of CHCs corresponds to safety of the system.

Thus we also refer to CHCs as being safe or unsafe when they are consistent or

inconsistent respectively.

AND-trees and trace trees. Derivations for CHCs are represented by AND-trees.

The following definitions of derivations and trace trees are adapted from Gallagher

and Lafave (1996). From now on, we assume that each clause has a unique identifier.

Definition 2 (AND-tree or derivation tree)

An AND-tree for a set of CHCs is a tree each of whose nodes is labelled by an atom,

a constraint and a clause identifier such that

1. each non-leaf node corresponds to a clause (with variables suitably renamed)

A← φ,A1, . . . , Ak and is labelled by an atom A, constraint φ and has children

labelled by atoms A1, . . . , Ak;

2. each leaf node corresponds to a clause A ← φ (with variables suitably re-

named) and is labelled by an atom A and constraint φ;

3. each node is labelled with the clause identifier of the clause corresponding to

the node.

The phrase “with variables suitably renamed” here and elsewhere in the paper

means that variables occurring in the body but not in the head do not occur in

the labels of any ancestor node. An example of an AND-tree is shown in Figure 3

(right).

c3

c2

c1 c1

c3 false φ1

c2 fib(A,B) φ2

c1 fib(A2,B2) φ3 c1 fib(A1,B1) φ4

Fig. 3. A trace-term c3(c2(c1, c1)) of Fib (left) and its AND-tree (right), where

φ1 ≡ A > 5 ∧ B < A; φ2 ≡ A > 1 ∧ A2 = A− 2 ∧ A1 = A− 1 ∧ B = B1 + B2; φ3 ≡
A2 ≥ 0 ∧ A2 ≤ 1 ∧ B2 = A2; φ4 ≡ A1 ≥ 0 ∧ A1 ≤ 1 ∧ B1 = A1.

6 Kafle, Gallagher and Ganty

Definition 3 (constr(t))

Given an AND-tree t, the conjunction of the constraints in its node labels is rep-

resented by constr(t). t is feasible or successful if and only if constr(t) is satisfiable

under T.

Definition 4

For an atom p(x) and a set of CHCs P we write P ` p(x) if there exists a feasible

AND-tree with root labelled by p(x).

Definition 5

A feasible AND-tree with root node labelled by false is called a counterexample.

The soundness and completeness of derivation trees (Jaffar et al. 1998) implies

that P is inconsistent if and only if P ` false, that is, P has a counterexample.

AND-trees in this paper, unless otherwise stated, are counterexamples.

An AND-tree t can be associated with a more abstract structure called a trace

tree, which is the result of removing all node labels from t apart from the clause

identifiers. The identifiers can be treated as constructors whose arity is the number

of atoms in the clause body of the clause associated with the identifier. In this way

we can write trace trees as terms (as in Figure 1(a)).

Thus a trace tree, together with a mapping from clause identifiers to clauses,

uniquely defines an AND-tree (up to renaming of variables). Namely, c(t1, . . . , tk)

corresponds to the AND-tree whose root is labelled by the atom A and the clause

A ← φ,A1, . . . , Ak whose identifier is c, and whose children are the AND-trees

corresponding to t1, . . . , tk respectively.

Definition 6 (Dimension of a CHC derivation)

The dimension of a derivation for a set of CHCs is the tree dimension of the AND-

tree (or associated trace tree) for the derivation.

It is clear from these definitions that the dimension of derivations is closely related

to the syntactic structure of CHCs. For instance, a set of linear clauses can give

rise only to derivations of dimension zero, since the corresponding trace trees are

linear.

3 Tree dimension and CHCs

3.1 Programs as CHCs and their dimension

In this subsection we discuss the notion of tree dimension in relation to CHCs repre-

senting imperative programs. CHCs provide a suitable language for expressing the

semantics of imperative languages (Peralta et al. 1998; Bjørner et al. 2015; Greben-

shchikov et al. 2012), enabling the use of CHC tools for verification of properties

of imperative programs. The clauses resulting from the translation may give rise to

derivations of different dimension, depending on the style of semantic specification

underlying the translation. For example, procedures call can be encoded as linear

(consider inline) or non-linear CHCs giving rise to different dimensions.

Tree dimension in verification of constrained Horn clauses 7

Imperative programs without procedures. Consider first a language with no proce-

dures. Let S be an imperative statement such as an assignment, conditional or

loop and let a configuration 〈S, σ〉 stand for statement S executing in state σ.

In structural operational semantics (Nielson and Nielson 1992) (sometimes called

small-step semantics), the meaning of statements is expressed by transitions of the

form 〈S, σ〉 ⇒ 〈S′, σ′〉, which means that executing S in state σ yields (in one exe-

cution step) the configuration 〈S′, σ′〉. A translation based on small-step semantics

then yields a corresponding linear clause pS(σ) ← φ(σ, σ′), pS′(σ′), where pS and

pS′ are predicates corresponding to statements S and S′ respectively, and φ(σ, σ′) is

a constraint relating the variables in states σ and σ′. (Alternatively, we could choose

pS′(σ′)← φ(σ, σ′), pS(σ), reversing the direction of the transition, depending on the

purpose of the encoding).

By contrast, in natural semantics (sometimes called big-step semantics), the

meaning of a statement S is expressed by a transition 〈S, σ〉 ⇒ σ′, where this

means that the execution of statement S in state σ terminates with final state σ′.

A translation based on big-step semantics yields clauses that break down such a

“big step” into smaller steps, using the syntactic structure of the statement.

The difference between the two styles can be clearly seen for the translation of a

statement sequence S1;S2. The small-step semantics would yield linear clauses of

the following form, in which the computation of S1 is carried out step by step until

S1 terminates, and then S2 is executed.

pS1;S2(σ)← φ1, pS′
1;S2

(σ′).

. . .

pS′′
1 ;S2

(σ)← φ2, pS2
(σ′).

pS2(σ)← φ3, pS′
2
(σ′).

. . .

The clauses resulting from small-step semantics closely correspond to the control-

flow graph of the statement, where each clause corresponds to an edge in the graph.

The big-step semantics of S1;S2 yields a clause of the form:

pS1;S2(σ, σ′′)← pS1(σ, σ′), pS2(σ′, σ′′).

pS1
(σ, σ′)←

pS2
(σ′, σ′′)←

. . .

Here the first clause is non-linear, chaining the two big steps corresponding to

the execution of S1 and S2 together to make one big step for S1;S2.

A translation from imperative code to CHCs may mix big- and small-step styles.

In both styles, a loop results in a recursive predicate (that is, one that calls itself

directly or indirectly). Regarding the dimension of derivations in the two styles,

however, it is clear that small-step semantics yields linear clauses and hence zero-

dimensional derivations, that is, all derivation trees will be linear. Big-step seman-

tics, on the other hand, yields non-linear clauses. However, although the clauses

contain recursive predicates for the loops, it can be shown that derivations using

the non-linear clauses derived from big-step semantics have bounded dimension,

8 Kafle, Gallagher and Ganty

with the bound determined by the level of statement nesting. Since clauses whose

derivations are of bounded dimension can be linearised (Kafle et al. 2016), these

non-linear clauses can be transformed to linear clauses. It may be asked whether

the result is the same as the clauses resulting from the small-step-based translation.

The answer is “not exactly”. While the linearised clauses resulting from big-step

semantics would correspond to the same small execution steps, there are more ar-

guments of the predicates than in the clauses resulting from small-step semantics,

representing the intermediate states that are created in the clause bodies resulting

from big-step semantics.

Example 1
Given the program P : x = 1; y = 2; the small-step encoding gives:

s(X,Y):- X1=1, Y1=Y, s1(X1,Y1).
s1(X,Y):- X1=X, Y1=2, s2(X1,Y1).
s2(X,Y):- true.

The big-step encoding gives:

b(X0,Y0,X2,Y2):- b1(X0,Y0,X1,Y1), b2(X1,Y1,X2,Y2).
b1(X0,Y0,X1,Y1):- X1=1, Y1=Y0.
b2(X1,Y1,X2,Y2):- X2=X1, Y2=2.

This can be straightforwardly linearised to the following, where each predicate

represents the remaining computation.

p(X0,Y0,X2,Y2):- p1(X0,Y0,X1,Y1,X2,Y2).
p1(X0,Y0,X1,Y1,X2,Y2):- X1=1, Y1=Y0, p2(X1,Y1,X2,Y2).
p2(X1,Y1,X2,Y2):- X2=X1, Y2=2.

This is similar to the small-step encoding, but contains more arguments, partly

due to the fact that the final state of the small-step encoding is not explicitly

returned, but it is returned in the big-step encoding, and partly due to the variables

representing intermediate states (for example in the predicate p1).

Imperative programs with procedures. Turning to a language with procedures, the

small-step semantics requires the state to include a stack, whose height is un-

bounded in the presence of recursive procedures. The call and return statements

respectively push and pop the stack. Thus the clauses, though still linear, are in-

terpreted over a richer domain than that of the program variables themselves. In

the big-step semantics no explicit stack is needed; a procedure call is represented,

as other statements, with a big-step predicate expressing the relation between the

states before and after the call (in effect, the predicate is a procedure summary).

As regards dimension, clauses resulting from big-step semantics of programs with

recursive procedures can give rise to derivations of unbounded dimension due to the

presence of recursive procedures of the form proc p() {...p();...p();...},
which yields a non-linear clause of this form.

p(σ0, σn)← . . . , p(σ1, σ2), . . . , p(σ3, σ4), . . .

Tree dimension in verification of constrained Horn clauses 9

M(n) =

{
n− 10 if n > 100

M(M(n + 11)) if n ≤ 100

mc91(N,X):- N>100, X=N-10.
mc91(N,X):- N=<100, Y=N+11,

mc91(Y,Y2), mc91(Y2,X).

Fig. 4. McCarthy’s 91-function and its encoding as CHCs.

We note that the clauses due to big-step semantics could still be linearised (in effect

a transformation to continuation-passing form in which a stack is introduced) but

this transformation is different from the linearisation of bounded-dimension clauses.

In summary, CHCs representing single imperative procedures with no calls to ex-

ternal procedures are naturally linear, either by direct translation based on small-

step semantics (or equivalently, control-flow graphs) or by translating to dimension-

bounded clauses using big-step semantics and then linearising using techniques pre-

sented in Kafle et al. (2016) and Afrati et al. (2003). On the other hand, imperative

programs with procedure calls can be given a straightforward translation into CHCs

using big-step semantics, but the dimension of derivations in the clauses is not in

general bounded. The techniques described in this paper for decomposition based

on dimension are hence mostly relevant for verification and analysis of imperative

programs with recursive procedures. Other techniques for obtaining linear clauses

from such programs do so at the cost of introducing a stack as a predicate argument.

3.2 Construction of dimension instrumented set of clauses

In some sets of CHCs, the dimension of derivation trees is not bounded, but there

is a bound on the dimension of feasible derivations. Figure 4 shows the well known

91-function of McCarthy2 together with its constrained Horn clauses representation.

Although it is possible to construct derivation trees of arbitrary dimension using

the clauses in Figure 4, the dependencies between the two recursive calls to mc91
imply that no feasible derivation tree for mc91(N,X) has dimension greater than

2. This is a meta-property of the set of clauses; however, as we now show, by

instrumenting the clauses with dimensions, such properties can be expressed as

safety properties of CHCs.

Definition 7 (Dimension-instrumented clauses)

Let P be a set of CHCs. The dimension instrumented set Pdim of CHCs is defined

as follows.

• For each predicate p of arity m define a predicate p′ of arity m+ 1.

• For each clause in P of the form

p(x)← φ, p1(x1), . . . , pn(xn)

construct a clause

p′(x, k)← φ, p′1(x1, k1), . . . , p′n(xn, kn), dim([k1, . . . , kn], k)

2 http://en.wikipedia.org/wiki/McCarthy 91 function

10 Kafle, Gallagher and Ganty

in Pdim, where k1, . . . , kn, k are fresh variables added as the final argument

for their respective predicates, and dim([k1, . . . , kn], k) is defined according to

the rules in Definition 1 for determining the dimension k of a tree from the

dimensions k1, . . . , kn of the subtrees of the root node.

Proposition 1
Let P be a set of CHCs and Pdim be the set of clauses defined from P using

Definition 7. Then Pdim ` p(t, k) if and only if the atom p(t) has a derivation of

dimension k in P .

Example 2
Figure 5 lists the dimension-instrumented version of the McCarthy 91-function.

mc91(N,X,K):- N>100, X=N-10, dim([],K).
mc91(N,X,K):- N=<100, Y=N+11,

mc91(Y,Y2,K1), mc91(Y2,X,K2), dim([K1,K2],K).
dim([],0).
dim([K1,K2], K3):- K1>=K2+1, K3=K1.
dim([K1,K2], K3):- K2>=K1+1, K3=K2.
dim([K1,K2], K3):- K1=K2, K3=K1+1.

Fig. 5. Dimension instrumented CHCs for the McCarthy 91-function.

3.3 Verification of dimension properties

Using the instrumented program we can try to prove information about the dimen-

sion, such as upper or lower bounds or other relationships between the dimension

and other predicate arguments.

Example 3
To establish that successful derivations for the atom mc91(X,Y) have dimension

at most 2 we add the integrity constraint false:- mc91(N,X,K), K>2. to the

dimension-instrumented clauses of Fig 5. The clauses together with the integrity

constraint are given to an automatic solver for Horn clauses, e.g. (Grebenshchikov

et al. 2012; Kafle et al. 2016), which is able to prove the safety of the clauses and

thus establish the upper bound of 2.

In the next example, we show that the dimension can depend on the values of

other predicate arguments.

Example 4
The dimension-instrumented version of the Fib clauses is shown in Figure 6. The

property to be proved is that the dimension of the trees rooted at false of Fib is

less than or equal to the half of Fib’s input value, expressed by the integrity con-

straint false:- fib(A,B,K), 2K-1>=A. Again, this property is established

by applying a Horn clause solver to prove the safety of the clauses together with

the integrity constraint.

Tree dimension in verification of constrained Horn clauses 11

fib(A,A,K):- A>=0, A=<1, dim([],K).
fib(A,B,K):- A>1, A2 =A-2, fib(A2,B2,K1),

A1=A-1, fib(A1,B1,K2), B=B1+B2, dim([K1,K2],K).

Fig. 6. Dimension instrumented CHCs for the Fib program.

%
cc(0,Y,1):- Y>0.
%
cc(X,_,0):- X<0.
cc(_,Y,0):- Y=<0.
%
cc(X,Y,Z):- X>0, kinds_of_coins(Y,A),

X1=X-A, cc(X1,Y,Z1),
Y1=Y-1, cc(X,Y1,Z2), Z=Z1 +Z2.

kinds_of_coins(1,1). kinds_of_coins(2,5). kinds_of_coins(3,10).
kinds_of_coins(4,25). kinds_of_coins(5,50).

Fig. 7. Counting change example encoded as a set of CHCs.

Example 5
We present the well known counting change example taken from Abelson and Suss-

man (1996, Chapter 1). Figure 7 shows its encoding in CHCs and the Figure 8 shows

the dimension-instrumented version of the clauses. The property of interest is to

relate the number of different coins (counts) with the dimension of the derivation

of the predicate cc. We can establish that the dimension is at most the number of

different coins as expressed by the integrity constraint false :- B>=1, K>B,
cc(A,B,C,K).

cc(0,Y,1,K):- Y>0, dim([],K).
cc(X,_,0,K):- X<0, dim([],K).
cc(_,Y,0,K):- Y=<0, dim([],K).
cc(X,Y,Z,K):- X>0, kinds_of_coins(Y,A,K0), X1=X-A,

cc(X1,Y,Z1,K1), Y1=Y-1, cc(X,Y1,Z2,K2),
Z=Z1+Z2, dim([K0,K1,K2],K).

kinds_of_coins(1,1,K):- dim([],K).
kinds_of_coins(2,5,K):- dim([],K).
kinds_of_coins(3,10,K):- dim([],K).
kinds_of_coins(4,25,K):- dim([],K).
kinds_of_coins(5,50,K):- dim([],K).

Fig. 8. Dimension instrumented CHCs for the Counting change example.

In general, verifying whether all the feasible derivation trees of a predicate in

the program has a certain dimension is as challenging as proving any other non-

trivial properties of the program. But in some cases the knowledge of dimension of

12 Kafle, Gallagher and Ganty

derivation trees of a program is useful for verifying other program properties. For in-

stance, using the knowledge that the derivation trees of McCarthy 91-function have

dimension at most 2 would allow us to restrict the verification of any program prop-

erty relating to successful derivations to the derivations in the dimension-bounded

program P≤2 (see Section 3.4.1) where P is the set of clauses for the McCarthy

91-function.

3.4 Derivation of dimension-bounded CHCs by partial evaluation

Definition 7 showed how to construct Pdim , an “instrumented” version of a set of

CHCs P , such that Pdim ` p(t, k) if and only if the atom p(t) has a derivation of

dimension k in P .

In this section we apply partial evaluation (Jones et al. 1993) to specialise Pdim

with respect to dimension constraints. In particular, from a given set of CHCs P ,

and a dimension bound k ≥ 0, we generate from Pdim sets of clauses P≤k and P>k,

whose derivations have dimension at most k and at least k + 1 respectively.

For instance, suppose we wish to generate a set of clauses whose derivations for

predicate p have dimension at most 2. Let p(x, k) be an atom and let φ(k) be a

constraint restricting the value of the dimension argument k, where in this case

φ(k) ≡ k ≤ 2. The goal of specialisation is to derive a set of clauses P≤2, whose

derivations for p(x, k) satisfy φ(k).

Specialisation for this example could be achieved just by replacing each clause

in Pdim of the form p(x, k) ← Body by p(x, k) ← k ≤ 2 ∧ Body in P≤2. However,

a derivation for Body for which k > 2 gives an infeasible derivation for p(x, k); we

would like to eliminate as many such infeasible derivations as possible from P≤2 by

partially evaluating the atom p(x, k) and propagating the given constraint through-

out the clauses. The presence of clauses leading to infeasible derivations tends to

cause analysis tools to make coarser approximations. Hence partial evaluation can

increase the precision obtained when analysing or verifying dimension-constrained

clauses.

Instantiation of a standard algorithm for partial evaluation. There are many vari-

ants of partial evaluation algorithms for CHCs. We present here an instantiation

of the “basic algorithm” for partial evaluation of logic programs (Gallagher 1993),

which is parameterised by an “unfolding rule” and an abstraction operation.

The pe stepP operation is applied to a set of constrained facts S representing

goals, and returns a set of constrained facts representing subgoals obtained from

the leaves of partial AND-trees for each element of S, constructed using the given

unfolding rule. More precisely,

pe stepP (S) = {pi(xi)← (φ ∧ θ)|xi
|

p(x)← θ ∈ S,
p(x)← φ, p1(x1), . . . , pm(xm) ∈ P,
SAT(θ ∧ φ),

1 ≤ i ≤ m}.

Tree dimension in verification of constrained Horn clauses 13

φ|v stands for the constraint ∃w.φ, where w = vars(φ) \ v.

Given a set of constrained facts S0 representing initial goals, the set lfp λS.(S0 ∪
pe stepP (S)) is the set of all constrained facts obtained from nodes in AND-trees

for elements of S0. That is, if p(x) ← θ ∈ S0, t is a feasible AND-tree with root

labelled by p(x), and q(y) is the label of a node in t, then q(y)← (constr(t)∧θ)|y ∈
lfp λS.(S0 ∪ pe stepP (S)). This set is usually infinite, and so we introduce an ab-

straction operation abstractΨ implementing a property-based abstraction (Greben-

shchikov et al. 2012). This is based on a fixed set of constrained facts Ψ, and

abstracts a set of constrained facts according to which properties in Ψ they satisfy.

Formally, abstractΨ is defined as follows.

abstractΨ(S) = {repΨ(p(x)← θ) | p(x)← θ ∈ S}
where

repΨ(p(x)← θ) = p(x)←
∧
{ψ | p(x)← ψ ∈ Ψ ∧ θ |= ψ}

Here, repψ is applied to a constrained fact, returning its abstract “representative”

with respect to the set Ψ. abstractΨ(S) generalises the constrained facts in S; for

every constrained fact p(x) ← θ ∈ S, there exists a (renamed) constrained fact

p(x) ← φ ∈ abstractΨ(S) such that θ |= φ. The maximum size of abstractΨ(S) is

2|Ψ| and so the closure S∗ = lfp λS.(S0 ∪ abstractΨ(pe stepP (S))) is finite.

The partial evaluation algorithm returns a set of clauses, pe clsΨ,P (S∗). The

predicates in the clauses are renamed according to their versions; that is, if S∗

contains constrained facts p(x)← θ1 and p(x)← θ2, then two renamed versions of

p are produced. Formally, pe clsΨ,P is defined as follows.

pe clsΨ,P (S) = {pv0(x)← θ ∧ φ, pv11 (x1), . . . , pvmm (xm) |
p(x)← θ ∈ S,
p(x)← φ, p1(x1), . . . , pm(xm) ∈ P,
SAT(θ ∧ φ)}

where pv0 is the version of p corresponding to its representative repΨ(p(x) ← θ)

and for 1 ≤ j ≤ m, p
vj
j is the version of p corresponding to the representative

repΨ(pj(xj)← (θ ∧ φ)|xj
).

As we will see in Sections 3.4.1 and 3.4.2, partial evaluation can return clauses,

whose dimension is bounded from above or below, depending on the initial set S0

and the set Ψ.

Proposition 2

Let P be a set of CHCs, S0 and Ψ be sets of constrained facts, where S0 ⊆ Ψ.

Let p(x) ← θ(x) ∈ S0. Let P ′ be the set of clauses pe clsΨ,P (S∗) where S∗ =

lfp λS.(S0 ∪ abstractΨ(pe stepP (S))).

Then there exists a renamed version of p, say pm in P ′ such that for all t,

P ′ ` pm(t) if and only if P ` p(t) ∧ θ(t)

Proof

• There exists pm such that P ` p(t) ∧ θ(t) ⇒ P ′ ` pm(t). This follows from

the soundness of the basic algorithm for partial evaluation, namely that it

preserves the derivations that satisfy the input constraint. The proof is by

14 Kafle, Gallagher and Ganty

induction on the iterations of the computation of the fixpoint, and we do not

give a proof here.

• There exists pm such that P ′ ` pm(t) ⇒ P ` p(t) ∧ θ(t). By assumption,

p(x) ← θ(x) ∈ Ψ. Hence S∗ contains a constrained fact of the form p(x) ←
θ(x) ∧ ψ1(x) ∧ . . . ∧ ψj(x), where {p(x) ← θ(x), p(x) ← ψ1(x), . . . p(x) ←
ψj(x)} ⊆ Ψ (j ≥ 0) and θ(x) |= ψi(x), 0 ≤ i ≤ j. Let pm be the renamed

predicate corresponding to p(x)← θ(x)∧ψ1(x)∧ . . .∧ψj(x). For every clause

with head pm(x), its body contains θ(x).

Let u′ be a feasible AND-tree for pm(t) in P ′. By construction, for every

clause in P ′, there is a clause in P that is identical except for (a) predicate

names and (b) the clause constraint, which is weaker in P than in P ′. Hence

there is a feasible AND-tree u for p(t) in P , that is identical to u′ except for

predicate names, and constr(u′)→ constr(u). Furthermore, constr(u′)→ θ(t)

(as θ(x) is in all clauses with head pm(x)), hence SAT(θ(t)∧constr(u)). Hence

there is a feasible AND-tree for p(t) ∧ θ(t), that is, P ` p(t) ∧ θ(t).

Example 6

Let P be the following clauses (containing no constraints in order to simplify the

example).

p:- true. p:- p,p.

Pdim is the following set of clauses, after unfolding the dim predicates.

p(K):- K=0.
p(K):- p(K1), p(K2), K1>=K2+1, K=K1.
p(K):- p(K1), p(K2), K2>=K1+1, K=K2.
p(K):- p(K1), p(K2), K1=K2, K=K1+1.

Let Ψ in the algorithm be {p(K):-K=<1, p(K):-K=<0} and S0 = {p(K):-K=<1}.
To compute lfp λS.(S0 ∪ abstractΨ(pe stepP (S))), the algorithm computes sets

S0, S1, . . . where Si+1 = Si ∪ abstractΨ(pe stepP (Si)). The lfp is the limit of

this sequence, which is reached when Si+1 = Si. The key steps in the execution are

as follows.

• pe stepP (S0) first constructs the set of clauses in P with K=<1 added to each

body. For example, from the second clause in Pdim we obtain:

p(K):- p(K1), p(K2), K1>=K2+1, K=K1, K=<1.

The two constrained atoms in the above clause, after checking satisfiability

and projecting the constraints onto their variables, are

{p(K1):- K1=<1, p(K2):- K2=<0} .

Applying abstractΨ to this set yields S1 =

{p(K):- K=<1, p(K):- K=<1,K=<0} .

Tree dimension in verification of constrained Horn clauses 15

fib(A,B,0) :- A>=0, A=<1, A=B.
fib(A,B,K) :- A>1, D=A-2, E=A-1, B=F+G,

fib(D,G,K2), fib(E,F,K1), K1+1=<K, K2=K.
fib(A,B,K) :- A>1, D=A-2, E=A-1, B=F+G, fib(D,G,K1),

fib(E,F,K2), K1+1=<K, K=K2.
fib(A,B,K) :- A>1, D=A-2, E=A-1, B=F+G,

fib(D,G,K1), fib(E,F,K2), K1=K-1, K2=K1.

Fig. 9. Dimension instrumented Fib program after unfolding dimension predicates.

The other clauses are treated similarly but no other new constrained facts are

returned.

• Since S0 6= S1, we compute S2 = S1 ∪ abstractΨ(pe stepP (S1)). Since no new

constrained facts are generated by this step (that is, S2 = S1), the limit of

the sequence is reached and so S2 = lfp λS.(S0 ∪ abstractΨ(pe stepP (S))).

• pe clsΨ,P (S2) returns the following set of clauses. The renaming distinguishes

the two atoms in S2, renaming the predicate p as p 1, corresponding to

p(A,K):- K=<1,K=<0, and p 2 corresponding to p(A,K):- K=<1.

p_2(B):- B=0.
p_2(B):- B>=F+1, B=<1, B=D, p_2(D), p_1(F).
p_2(B):- B>=D+1, B=<1, B=F, p_1(D), p_2(F).
p_2(B):- B=<1, B=D+1, B=F+1, p_1(D), p_1(F).
p_1(B):- B=0.
p_1(B):- B>=F+1, B=<0, B=D, p_1(D), p_1(F).
p_1(B):- B>=D+1, B=<0, B=F, p_1(D), p_1(F).
p_1(B):- B=<0, B=D+1, B=F+1, p_1(D), p_1(F).

We notice that for predicate p 1 the last three clauses cannot succeed since they

would yield a derivation whose dimension is greater than 0 and hence the constraints

in those clauses would not be satisfied. However, we can see that the successful

derivations of p 1(K) have K=<0 and the successful derivations of p 2(K) have

K=<1.

In Sections 3.4.1 and 3.4.2, the partial evaluation algorithm is applied to Pdim

after first unfolding the dim atoms (as shown in Figure 9 for the clauses for Fib),

suitably instantiating the inputs S0 and Ψ, to generate clauses whose derivations

have dimensions that are bounded from above and below respectively.

3.4.1 Construction of at-most-k-dimension set of clauses

Given an instrumented set of CHCs Pdim and k ≥ 0, we apply the partial evaluation

algorithm to obtain P≤k, the at-most-k dimension clauses. Let C ∈ {=,≤} and in

the algorithm, let S0 = {p(x, z)← zCk | p is a predicate in P} and Ψ = {p(x, z)←
z C d | 0 ≤ d ≤ k, p is a predicate in P}.

Figure 10 shows the at-most-1-dimension clauses for Fib. The predicate names

16 Kafle, Gallagher and Ganty

have been chosen to reflect the dimension constraints. The final argument is the

dimension, as in the instrumented clauses.

false=1(A):- C>5,C-D>0,A=1,fib=1(C,D,A).
false≤1(A):- A>=0,C>5,C-D>0,-A>= -1,fib≤1(C,D,A).

fib=1(A,B,C):- A>1,C=1,A-E=2,A-F=1,
B-G-H=0,I=0,fib=1(E,H,C),fib=0(F,G,I).

fib=1(A,B,C):- A>1,C=1,A-E=2,A-F=1,
B-G-H=0,I=0,fib=0(E,H,I),fib=1(F,G,C).

fib=1(A,B,C):- A>1,C=1,A-E=2,A-F=1,
B-G-H=0,I=0,fib=0(E,H,I),fib=0(F,G,I).

fib=0(A,B,C):- A>=0,-A>= -1,A-B=0,C=0.
fib≤1(A,B,C):- A>=0,-A>= -1,A-B=0,C=0.
fib≤1(A,B,C):- A>1,C=1,A-E=2,A-F=1,

B-G-H=0,I=0,fib=1(E,H,C),fib=0(F,G,I).
fib≤1(A,B,C):- A>1,C=1,A-E=2,A-F=1,

B-G-H=0,I=0,fib=0(E,H,I),fib=1(F,G,C).
fib≤1(A,B,C):- A>1,C=1,A-E=2,A-F=1,

B-G-H=0,I=0,fib=0(E,H,I),fib=0(F,G,I).

Fig. 10. Fib≤1 : at-most-1-dimension version of Fib.

Note that for each predicate p and each d, 0 ≤ d ≤ k, the partial evaluation

produces versions for both p≤d and p=d (though the set of clauses for some of these

versions might be empty).

By Proposition 2, for each predicate p of P , P≤k contains a predicate (which we

call p≤k) all of whose derivations have dimension at most k.

3.4.2 Construction of at-least-k-dimension set of clauses

We obtain P>k−1, the at-least-k dimension clauses in a similar way. In the algo-

rithm, let S0 = {p(x, z) ← z ≥ k | p is a predicate in P}. Let Ψ = {p(x, z) ← z ≥
d | 0 ≤ d ≤ k, p is a predicate in P}.

Figure 11 shows the at-least-1-dimension clauses for Fib. The predicate names

have been chosen to reflect the dimension constraints.

By Proposition 2, for each predicate p of P , P>k−1 contains a predicate (which

we call p≥k or sometimes p>k−1) all of whose derivations have dimension at least k.

4 Verification Algorithms

In this section, we describe two algorithms for verification of CHCs, based on the

notion of tree dimension. The verification problem we address is to decide whether

a given set of CHCs has a model. In case it has no model, the problem is to find a

counterexample. A set of CHCs has a model if and only if there is no derivation of

false from the clauses (or of false≤k or false>k for some dimension bounded ver-

sion of false). Such a derivation exists only if the set contains at least one integrity

Tree dimension in verification of constrained Horn clauses 17

false≥1(A):- A>=1,C>5,C-D>0,fib≥1(C,D,A).

fib≥1(A,B,C):- A>1,C-I>=1,I>=0,A-E=2,A-F=1,
B-G-H=0,fib≥1(E,H,C,J),fib≥0(F,G,I,K).

fib≥1(A,B,C):- A>1,C-I>=1,I>=0,A-E=2,A-F=1,
B-G-H=0,fib≥0(E,H,I),fib≥1(F,G,C).

fib≥1(A,B,C):- A>1,C>=1,A-E=2,A-F=1,
B-G-H=0,C-I=1,fib≥0(E,H,I),fib≥0(F,G,I).

fib≥0(A,B,C):- A>=0,-A>= -1,A-B=0,C=0.
fib≥0(A,B,C):- A>1,C-I>=1,I>=0,A-E=2,A-F=1,

B-G-H=0,fib≥1(E,H,C),fib≥0(F,G,I).
fib≥0(A,B,C):- A>1,C-I>=1,I>=0,A-E=2,A-F=1,

B-G-H=0,fib≥0(E,H,I),fib≥1(F,G,C).
fib≥0(A,B,C):- A>1,C>=1,A-E=2,A-F=1,

B-G-H=0,C-I=1,fib≥0(E,H,I),fib≥0(F,G,I).

Fig. 11. Fib>0 : at-least-1-dimension version of Fib.

constraint (clause with head false (or false≤k or false>k)). A set containing no

integrity constraints has at least one model, namely the interpretation consisting

of p(x)← true for every predicate p in the clauses.

4.1 Decomposition by dimension of verification problem

We first present an algorithm exploiting the decomposition of a set P of CHCs

into complementary sets P≤k and P>k. For each k, these two sets can be solved

separately (possibly in parallel).

Proposition 3 (Decomposition by dimension)

A set of CHCs P is safe if and only if for some k, both P≤k and P>k are safe.

Proof

Let both P≤k and P>k be safe, for some k. Equivalently, P≤k 6` false and P>k 6`
false. By the constructions in Sections 3.4.1 and 3.4.2 and Proposition 2, there

is no derivation of false in P of dimension ≤ k or of dimension > k, which is

equivalent to P 6` false, i.e. P is safe.

The essence of the algorithm based on tree dimension is to decompose P into

P≤k and P>k for successive values of k. If for some k, both of them are safe, then

P is also safe, by Proposition 3. P is unsafe if we find a k such that one of them is

unsafe.

Lifting interpretations. We introduce a lifting which constructs a syntactic inter-

pretation for a set of CHCs given a syntactic interpretation for an annotated version

of the same set of CHCs.

18 Kafle, Gallagher and Ganty

Definition 8 (S↑: Lifting of an interpretation)

Let Pred be a set of predicates, I be a finite set. Define PredI = {p4 | p ∈
Pred,4 ∈ I} and let S be an interpretation of PredI given by constrained facts.

Then S↑ is the following set of constrained facts:

S↑ = {p(x)←
∨

(p4(x)←φ)∈S φ | p
4 ∈ PredI} .

The procedure SolvePartition defined in Algorithm 1 makes use of a procedure

Safe(P), which is a sound oracle: if it returns (safe, solution) then P is safe; if it

returns (unsafe, counterexample) then P is unsafe and the counterexample proves it;

else we know nothing about P and unknown is returned. The oracle Safe could be

any existing automatic Horn clause solver (Grebenshchikov et al. 2012; Kafle et al.

2016; Hoder and Bjørner 2012; De Angelis et al. 2014; Mordvinov and Fedyukovich

2017) possibly with a timeout. When it cannot verify a program within a given

time limit, it returns unknown.

Consider a call SolvePartition(P, k, ∅), the algorithm checks first (using the ora-

cle) whether P≤k is safe and if so then it proceeds to check whether P>k is safe. If,

for either set of CHCs, the oracle returns unsafe then the algorithm returns unsafe.

Similarly, if, for both sets of CHCs, the oracle returns safe then the algorithm re-

turns safe together with the interpretation built so far augmented with the current

solution R′ (line 13), defining a model for P . Otherwise, the Safe oracle returns

unknown. The unknown for P≤k is propagated and the unknown for P>k causes the

algorithm to proceed by calling itself recursively on the set P>k, with k + 1 and

with the interpretation built so far.

Algorithm 1 SolvePartition(P ,k,S)

1: Input: A set of CHCs P , an integer k ≥ 0, and an interpretation S (init ∅)
2: Output: (safe, solution) | (unsafe, counterexample) | unknown
3: (status,R)← Safe(P≤k)

4: if status=unsafe then

5: return (unsafeR) . P≤k is unsafe, hence P is unsafe

6: if status=unknown then

7: return unknown . P≤k may be safe or unsafe, so is P

8: P>← P>k . We turn to P>k as P≤k is safe

9: (status,R′)← Safe(P>)

10: if status=unsafe then

11: return (unsafe,R′) . P>k is unsafe, hence P is unsafe

12: if status=safe then

13: return (safe, (S ∪R ∪R′)↑) . P≤k and P>k are safe, hence P is safe

14: return SolvePartition(P>,k + 1,S ∪R) . recurse: P>k may be safe or unsafe

Example 7

Applying the algorithm to our example program Fib, the oracle Safe finds that both

Fib≤0 and Fib>0 are safe, and thus Fib is safe.

Tree dimension in verification of constrained Horn clauses 19

applen(A,B,C):- A=0, B=C, B>=0.
applen(A,B,C):- applen(A1,B,C1), A=A1+1, C=C1+1.

revlen(A,B):- A=0, B=0.
revlen(A,B):- revlen(A1,C), applen(C,D,B), A=A1+1, D=1.

false :- revlen(A,B), A 6=B.

Fig. 12. Length abstracted version of reverse of a list.

The soundness of the above algorithm follows from the soundness of the oracle

and the properties of dimension bounded set of clauses, which is formally stated by

the following proposition.

Proposition 4 (Soundness)

If Algorithm 1 returns (un)safe on a set of CHCs P then P is (un)safe.

4.2 Verification by successive iteration of bounded dimension CHCs

For an unsafe program P , there exists some k0 ≥ 0 such that P≤k is unsafe for all

k ≥ k0. So for discovering a bug, we can generate P≤k successively for k = 0, 1, 2, . . .

and check its safety, as in bounded model checking (BMC). In BMC, the original

program and the bounded underapproximations are decidable. By contrast, the

under-approximations obtained by dimension bounding are themselves undecidable

and there is no upper bound on the dimension.

However, a solution of a bounded dimension program can extend to a solution

of the original problem as we shall see. The example in Figure 12 is the at-most-1-

dimension version of the example in Figure 12. The oracle Safe derives the following

invariant for the predicates applen≤1 and revlen≤1 from it. This invariant (mapped

to the original program using Definition 8) is in fact an invariant of the original

program (in Figure 12). Thus the solution of an underapproximation is the solution

of the original program.

applen≤1(A, B, C)← B ≥ 0 ∧ A ≥ 0 ∧ A + B = C.

revlen≤1(A, B)← B ≥ 0 ∧ A = B.

Therefore, the safety of P≤k also can be checked successively for increasing value

of k starting from 0 until P≤k (for some k) is proven unsafe or its solution gen-

eralises to P or the results for P≤k is unknown. A solution for P≤k generalises to

P if the lifted model of P≤k using Definition 8 is also a model of P . The itera-

tion done this way does not make any reuse of solutions of lower dimension while

verifying a program of higher dimension, which could save some verification effort.

The iteration in which the iterates of higher dimension reuses solutions from lower

dimensions is reminiscent of Newtonian iteration (Esparza et al. 2010). However,

reuse introduces a new problem since solutions are approximate. If a counterexam-

ple is found for P≤k+1 (where solutions from lower dimensions are used), it needs to

be further examined since it may not be a counterexample for P≤k+1 (in which no

20 Kafle, Gallagher and Ganty

applen=0(A,B,C):- A=0, B=C, B>=0.
applen=1(A,B,C):- A=D+1, C=E+1, applen=1(D,B,E).
applen=0(A,B,C):- A=D+1, C=E+1, applen=0(D,B,E).
applen≤1(A,B,C):- applen=1(A,B,C).
applen≤1(A,B,C):- applen=0(A,B,C).
applen≤0(A,B,C):- applen=0(A,B,C).

revlen=0(A,B) :- A=0, B=0.
revlen=1(A,B) :- A=C+1, E=1, applen≤0(D,E,B), revlen=1(C,D).
revlen=1(A,B) :- A=C+1, E=1, revlen≤0(C,D), applen=1(D,E,B).
revlen=1(A,B) :- A=C+1, E=1, revlen=0(C,D), applen=0(D,E,B).
revlen≤1(A,B) :- revlen=1(A,B). revlen≤1(A,B) :- revlen=0(A,B).
revlen≤0(A,B) :- revlen=0(A,B).

false=1:- A 6=B, revlen=1(A,B). false=0 :- A 6=B, revlen=0(A,B).
false≤1 :- false=1. false≤1 :- false=0. false≤0 :- false=0.

Fig. 13. At-most-1-dim version of reverse list example in Figure 12

solutions are used from lower dimensions). We present a solution to this problem

in Algorithm 2 via refinement of approximations. Before presenting the algorithm,

we first introduce Definition 9 which defines the subset of S of constrained facts

involved in a derivation t.

Definition 9 (S|t)

Let S be an interpretation of a set of CHCs P given by constrained facts and let t

be any derivation in P . Define S|t to be

S|t = {(A← φ) | (A← φ) ∈ S ∧ atom A labels a node of t} .

Next, we define the auxiliary procedure subst() as follows.

Definition 10 (subst(P ,S))

Given a set of CHCs P and an interpretation S, define subst(P ,S) as the set of

CHCs obtained as follows: for every constrained fact A ← φ in S, replace all the

clauses from P whose head is A with the clause A← φ.

We now turn to Algorithm 2. Consider a call SolveInc(P, k, ∅); the algorithm

checks first (using the oracle) whether P≤k with the information provided by S

“plugged in” using subst is safe (line 3). If the oracle returns unknown, the algo-

rithm returns unknown (line 4-5). Else if the oracle returns unsafe, the counterex-

ample R is further examined (line 6-9). If it uses no constrained facts of S then the

counterexample is also a counterexample for P (line 7-8). In the case that some

constrained facts of S are used in R then the algorithm recurses with those facts

removed from S (line 9). Finally, if the oracle returns safe the algorithm checks

whether the model extends to P and returns safe if so (line 10-11). Should the

check fail the algorithm recurses with k increased (line 12).

Removing the over-approximations used by the counterexample ensures progress

(as we shall see in the example below) in the sense that the same counterexample

Tree dimension in verification of constrained Horn clauses 21

Algorithm 2 SolveInc(P , k, S)

1: Input: A set of CHCs P , an integer k ≥ 0, and an interpretation S (init ∅)
2: Output: (safe, solution) | (unsafe, counterexample) | unknown
3: (status,R)← Safe(subst(P≤k, S)) . substitute syntactic model S into P≤

4: if status=unknown then

5: return unknown

6: if status=unsafe then . R is a counterexample for subst(P≤, S)

7: if S|R = ∅ then . R uses no predicate defined by S

8: return (unsafe,R) . hence R is a counterexample for P

9: return SolveInc(P , k, S \ S|R) . recurse with the facts of S not used in R

10: if (R↑ is a solution of P) then . subst(P≤k, S) is safe

11: return (safe,R↑)

12: return SolveInc(P , k + 1, R) . R↑ does not solve P , recurse

does not arise again in the next iteration. This is because if the same trace arises

again and does not use any over-approximations, then it must be a counterexample.

In the worst case, all the solutions from the lower dimensions are removed.

Consider an example program (linear for simplicity) shown below.

c1. false:- X=0, p(X). c2. false:- q(X).
c3. p(X):- X>0. c4. q(X):- X=0.

Suppose we have an approximate solution S = {p(X)← true} for the predicate

p(X). Using this solution, the above program is transformed into the following

program.

c1. false:- X=0, p(X). c2. false:- q(X).
c3. p(X):- true. %
c4. q(X):- X=0.

The trace c1(c3) is a counterexample for this transformed program but not for

the original program (since it uses an approximate solution for the predicate p).

However the trace c2(c4) is a counterexample for this program as well as for the

original since it does not use any approximate solution for the predicates appearing

in the counterexample.

5 Experimental results

5.1 Verification of safety properties

Implementation and experimental setting. Algorithms 1 and 2 are imple-

mented in Ciao Prolog (Hermenegildo et al. 2012), interfaced with the Parma Poly-

hedra Library (Bagnara et al. 2008) and the Yices 2.2 SMT solver (Dutertre 2014)

for the manipulation of constraints. The experiments are carried out on a set of

45 (36 safe and 9 unsafe) CHC verification problems taken from three sources: the

22 Kafle, Gallagher and Ganty

repository of NTS benchmarks3, the recursive category of SV-COMP4 (Beyer 2015)

and the benchmarks from the QARMC tool (Grebenshchikov et al. 2012). Examples

were chosen that potentially have derivations of unbounded dimension (that is, they

are sets of non-linear clauses). Some of these benchmarks are first translated to Pro-

log syntax using the tools ELDARICA5 (Hojjat et al. 2012) and SeaHorn (Gurfinkel

et al. 2015). The benchmarks are not beyond the capabilities of the existing Horn

clause solvers, but they are typically used for testing the performance of new tools.

The experimental evaluation is done on a MacBook Pro running OS X on 2.3 GHz

Intel core i7 processor, 4 cores and 8 GB memory. The results of these algorithms

are compared with that of Rahft (Kafle et al. 2016), a Horn clause verifier which

refines an abstract interpretation by eliminating infeasible derivations.

Implementation of P≤k and P>k. For the experiments, we constructed the set of

clauses P≤k and P>k using the procedures described in Section 3.4.

The experiments are intended to establish (i) whether the dimension-based de-

composition is practical, (ii) the relationship between the dimension and the solv-

ability of a problem and (iii) how this approach compares other approaches.

Discussion. The results are summarised in Table 1. We report results for three

verification algorithms, namely Algorithm 1 and Algorithm 2, and the Safe oracle

that is used in those algorithms. For Algorithm 1, we report the result returned,

the dimension bound, and the time. For the Safe oracle we report the result and

time, and for Algorithm 2 we return the dimension when a result is returned (if at

all) and the time.

The oracle Safe used in both algorithms is an abstract interpreter over the domain

of convex polyhedra (Kafle et al. 2016), which returns unsafe if a feasible derivation

of the predicate false exists, safe if a syntactic model can be found within a time

bound, and unknown otherwise.

Firstly, the results show that implementation of decomposition based on tree

dimension is practical. Algorithm 1 solves 43 out of 45 problems and Algorithm

2 solves about 27 out of 45 problems. There are 7 examples where Algorithm 1

with dimension k ≤ 2 was enough to prove safety but the Safe oracle was not able

to return safe or unsafe. That is, with a given oracle Safe, there are examples for

which Safe returns unknown on the original clauses, but there is a low dimension

(say k = 0 or k = 1) where Safe returns safe on both P≤k and P>k. This is evidence

that decomposition by dimension is useful with respect to that particular oracle

and is an effective refinement heuristic for these cases. While in other refinement

approaches, a spurious counterexample is the basis of refinement, Algorithms 1 and

2 can be viewed as performing refinement in which clauses are refined by eliminating

safe derivations of lower dimensions, thereby removing a possibly infinite number

of traces that have already been shown to be safe.

3 https://github.com/pierreganty/NTSLib/
4 http://sv-comp.sosy-lab.org/2015/benchmarks.php
5 https://github.com/uuverifiers/eldarica

https://github.com/pierreganty/NTSLib/
http://sv-comp.sosy-lab.org/2015/benchmarks.php
https://github.com/uuverifiers/eldarica

Tree dimension in verification of constrained Horn clauses 23

Table 1. Experimental results on 45 CHC verification problems with a timeout of

5 minutes. Times are in seconds.

Alg. 1 Safe oracle Alg. 2
Program safety dim time result time dim time
Addition03 false-unreach safe 0 3 safe < 1 ? ?
McCarthy91 false-unreach unsafe 1 6 unsafe < 1 ? ?
addition.nts.pl safe 0 3 safe < 1 1 < 1
bfprt.nts.pl safe 0 5 safe < 1 2 4
binarysearch.nts.pl safe 0 3 safe < 1 1 1.1
countZero.nts.pl safe 0 4 safe < 1 1 < 1
eq.horn unsafe 0 3 unsafe < 1 2 < 1
fib.pl safe 1 6 ? ? ? ?
identity.nts.pl safe 0 4 safe < 1 1 < 1
merge.nts.pl safe 0 5 safe < 1 1 1.7
palindrome.nts.pl safe 0 3 safe < 1 1 < 1
parity.nts.pl unsafe 0 3 ? ? ? ?
remainder.nts.pl unsafe 0 3 unsafe < 1 1 < 1
revlen.pl safe 0 3 safe < 1 1 < 1
running.nts.pl unsafe 1 4 ? ? ? ?
sum 10x0 false-unreach unsafe ? ? ? ? ? ?
sum non eq false-unreach unsafe 0 3 unsafe < 1 ? ?
suma1.horn unsafe 0 3 unsafe < 1 1 < 1
suma2.horn unsafe 0 3 unsafe < 1 2 < 1
summ SG1.r.horn safe 0 2 safe < 1 ? ?
summ SG2.r.horn safe ? ? ? ? ? ?
summ SG3.horn safe 0 3 safe < 1 1 < 1
summ b.horn safe 2 12 ? ? ? ?
summ binsearch.horn safe ? ? ? ? ? ?
summ cil.casts.horn safe 0 3 safe < 1 1 < 1
summ formals.horn safe 0 4 safe < 1 1 < 1
summ g.horn safe 0 3 safe < 1 ? ?
summ globals.horn safe 0 3 safe < 1 1 < 1
summ h.horn safe 0 3 safe < 1 2 < 1
summ local-ctx-call.horn safe 0 2 safe < 1 1 < 1
summ locals.horn safe 0 4 safe < 1 ? ?
summ locals2.horn safe 0 2 safe < 1 1 < 1
summ locals3.horn safe 0 3 safe < 1 1 < 1
summ locals4.horn safe 0 3 safe < 1 2 2.2
summ mccarthy2.horn safe ? ? ? ? ? ?
summ multi-call.horn safe 0 3 safe < 1 1 < 1
summ nested.horn safe 0 3 safe < 1 1 < 1
summ ptr assign.horn safe 0 3 safe < 1 1 < 1
summ recursive.horn safe 0 3 ? ? ? ?
summ rholocal.horn safe 0 3 safe < 1 1 < 1
summ rholocal2.horn safe 0 3 safe < 1 1 < 1
summ slicing.horn safe 0 3 safe < 1 ? ?
summ summs.horn safe 0 3 safe < 1 ? ?
summ typedef.horn safe 0 4 safe < 1 1 < 1
summ x.horn safe 0 3 safe < 1 ? ?
solved (safe/unsafe) 43 (35/8) 36 (30/6) 27 (23/4)

24 Kafle, Gallagher and Ganty

Most of the problems solved using Algorithm 1 are solved when they are decom-

posed with dimension k = 0. The separation of the derivations (k = 0) eases the

verification task. Only 4 problems that were solved needed decomposition greater

than 0. Similarly, for Algorithm 2, the solution of an under-approximation (P≤k) for

a fairly small value of k = 1 or k = 2 was sufficient for finding a syntactic model for

those problems that were solved. Though this observation may be related to this

particular set of examples, we suspect that many application problems resulting

from encoding imperative programs have derivation trees of low dimension.

Use of linearisation. As mentioned previously, P≤k can be linearised, potentially

allowing the use of specialised verification procedures for linear clauses. Although

our implementation of the oracle Safe contains no special facilities for dealing with

linear clauses, we applied a linearisation procedure in Algorithm 2. For this pur-

pose we used a procedure based on partial evaluation (Kafle et al. 2016). We did

not observe that linearisation in itself offers any advantages, although one might

expect that linear clauses were in some way a simpler case for verification. In or-

der to exploit linearisation, it would be necessary to use a verification procedure

with more specialised procedures for recognising and solving particular classes of

linear recursive predicates amenable to precise solution, for example as described

by Gonnord and Halbwachs (2006).

Limitations of our experiments and possible improvements. It would be possible

to combine dimension-bounded decomposition with refinement-based solving. For

example, our oracle Safe is limited in that it does not attempt any refinement af-

ter computing a convex polyhedra abstract interpretation of the clauses. It returns

unknown if the over-approximation allows a derivation of false, which might, how-

ever, be infeasible. Thus Algorithm 2 tends to return unknown before the timeout,

in cases where a more sophisticated oracle would allow the procedure to continue.

6 Discussion and Related Work

The notion of dimension of a tree has a long history in science (starting with Geol-

ogy) which has been detailed by Esparza et al. (2014). However, the use of dimension

for program verification is more recent. Ganty et al. (2016) used the notion of tree di-

mension for computing summaries of procedural programs by under-approximating

them. Roughly speaking, they compute procedure summaries iteratively, starting

from the program behaviours captured by derivation trees of dimension 0. Then

they reuse these summaries to compute summaries for program behaviours cap-

tured by derivation trees of dimension 1 and so on for 2, 3, etc. We adapt the idea

of dimension-based under-approximations to the setting of CHCs.

Decomposition can be compared to refinement techniques based on automata

(Heizmann et al. 2009; Heizmann et al. 2013; Kafle and Gallagher 2017) in which

the aim is to eliminate sets of program traces that have been shown to be safe. In our

case, establishing the safety of clauses whose derivations are of a given dimension

allows us to eliminate those dimensions, and focus on the remaining dimensions.

Tree dimension in verification of constrained Horn clauses 25

Our decomposition technique offers a practical way to checking and eliminating

infinite sets of traces.

In the world of constrained Horn clause verification tools (solvers) we can dis-

tinguish solvers depending on whether they can handle general non-linear Horn

clauses or not. A majority of solvers (Gurfinkel et al. 2015; Grebenshchikov et al.

2012; Rümmer et al. 2013; McMillan and Rybalchenko 2013; Kafle and Gallagher

2017) handle non-linear Horn clauses but there are notable exceptions like Ver-

iMAP (De Angelis et al. 2014) or Sally6. For both VeriMAP and Sally, their under-

lying reasoning engine handles only linear Horn clauses which appears to restrict,

in principle, their applicability. However, prior work on consistency preserving lin-

earisation of dimension-bounded sets of CHCs (Kafle et al. 2016) shows solvers for

linear CHCs can be used to check consistency of non-linear sets of CHCs. Another

work on linearisation of CHCs based on fold-unfold transformations is described by

De Angelis et al. (2015).

7 Conclusion and Future Work

We applied the notion of tree dimension to decompose constrained Horn clause

verification problems by dimensions. We presented algorithms based on this idea;

whose results on a set of non-linear Horn clause verification benchmarks show its

feasibility and usefulness both for proving safety as well as for finding bugs in

programs. We also looked into the problem of instrumenting clauses with dimension

predicates and reason about the dimension directly from the resulting clauses.

Other ideas for program verification based on tree dimension are worth investi-

gating, including induction based on tree dimension, and further investigation of

strategies that could exploit knowledge of dimension bounds (such as those dis-

cussed in Section 3.3).

Acknowledgements

The research leading to these results has been supported by EU FP7 project

318337, ENTRA - Whole-Systems Energy Transparency, EU FP7 project 611004,

coordination and support action ICT-Energy, EU FP7 project 610686, POLCA -

Programming Large Scale Heterogeneous Infrastructures, Madrid Regional Gov-

ernment project S2013/ICE-2731, N-Greens Software - Next-GeneRation Energy-

EfficieNt Secure Software, and the Spanish Ministry of Economy and Competi-

tiveness project No. TIN2015-71819-P, RISCO - RIgorous analysis of Sophisticated

COncurrent and distributed systems. The first author is supported by the Aus-

tralian Research Council Discovery Project grant DP140102194.

We thank the anonymous reviewers for their comments and suggestions, which

greatly improved the paper.

6 https://github.com/SRI-CSL/sally

https://github.com/SRI-CSL/sally

26 Kafle, Gallagher and Ganty

References

Abelson, H. and Sussman, G. J. 1996. Structure and Interpretation of Computer Pro-
grams, Second Edition. MIT Press.

Afrati, F. N., Gergatsoulis, M., and Toni, F. 2003. Linearisability on datalog pro-
grams. Theor. Comput. Sci. 308, 1-3, 199–226.

Bagnara, R., Hill, P. M., and Zaffanella, E. 2008. The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and verification of
hardware and software systems. Sci. Comput. Program. 72, 1-2, 3–21.

Baier, C. and Tinelli, C., Eds. 2015. TACAS. Proceedings. LNCS, vol. 9035. Springer.

Beyer, D. 2015. Software verification and verifiable witnesses - (report on SV-COMP
2015). See Baier and Tinelli (2015), 401–416.

Bjørner, N., Gurfinkel, A., McMillan, K. L., and Rybalchenko, A. 2015. Horn
clause solvers for program verification. In Fields of Logic and Computation II - Essays
Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday, L. D. Beklemishev,
A. Blass, N. Dershowitz, B. Finkbeiner, and W. Schulte, Eds. LNCS, vol. 9300. Springer,
24–51.

Bjørner, N., McMillan, K. L., and Rybalchenko, A. 2013. On solving universally
quantified Horn clauses. In SAS, F. Logozzo and M. Fähndrich, Eds. LNCS, vol. 7935.
Springer, 105–125.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2014. Verimap:
A tool for verifying programs through transformations. In TACAS, E. Ábrahám and
K. Havelund, Eds. LNCS, vol. 8413. Springer, 568–574.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2015. Proving
correctness of imperative programs by linearizing constrained Horn clauses. TPLP 15, 4-
5, 635–650.

Dutertre, B. 2014. Yices 2.2. In CAV, A. Biere and R. Bloem, Eds. LNCS, vol. 8559.
Springer, 737–744.

Esparza, J., Kiefer, S., and Luttenberger, M. 2007. On fixed point equations over
commutative semirings. In STACS, Proceedings. LNCS, vol. 4393. Springer, 296–307.

Esparza, J., Kiefer, S., and Luttenberger, M. 2010. Newtonian program analysis.
J. ACM 57, 6, 33.

Esparza, J., Luttenberger, M., and Schlund, M. 2014. A brief history of strahler
numbers. In LATA. Proceedings, A. H. Dediu, C. Mart́ın-Vide, J. L. Sierra-Rodŕıguez,
and B. Truthe, Eds. LNCS, vol. 8370. Springer, 1–13.

Gallagher, J. P. 1993. Specialisation of logic programs: A tutorial. In Proceedings
PEPM’93, ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation. ACM Press, Copenhagen, 88–98.

Gallagher, J. P. and Lafave, L. 1996. Regular approximation of computation paths
in logic and functional languages. In Partial Evaluation, O. Danvy, R. Glück, and
P. Thiemann, Eds. Springer-Verlag LNCS, vol. 1110. 115–136.

Ganty, P., Iosif, R., and Konečný, F. 2016. Underapproximation of procedure sum-
maries for integer programs. STTT 19, 5 (apr), 565–584.

Gonnord, L. and Halbwachs, N. 2006. Combining widening and acceleration in linear
relation analysis. In SAS, K. Yi, Ed. LNCS, vol. 4134. Springer, 144–160.

Grebenshchikov, S., Gupta, A., Lopes, N. P., Popeea, C., and Rybalchenko, A.
2012. HSF(C): A software verifier based on Horn clauses - (competition contribution).
In TACAS, C. Flanagan and B. König, Eds. LNCS, vol. 7214. Springer, 549–551.

Grebenshchikov, S., Lopes, N. P., Popeea, C., and Rybalchenko, A. 2012. Synthe-

Tree dimension in verification of constrained Horn clauses 27

sizing software verifiers from proof rules. In PLDI, J. Vitek, H. Lin, and F. Tip, Eds.
ACM, 405–416.

Gurfinkel, A., Kahsai, T., and Navas, J. A. 2015. SeaHorn: A framework for verifying
C programs (competition contribution). See Baier and Tinelli (2015), 447–450.

Heizmann, M., Hoenicke, J., and Podelski, A. 2009. Refinement of trace abstraction.
In SAS, J. Palsberg and Z. Su, Eds. LNCS, vol. 5673. Springer, 69–85.

Heizmann, M., Hoenicke, J., and Podelski, A. 2013. Software model checking for
people who love automata. See Sharygina and Veith (2013), 36–52.

Hermenegildo, M. V., Bueno, F., Carro, M., López-Garćıa, P., Mera, E.,
Morales, J. F., and Puebla, G. 2012. An overview of ciao and its design philos-
ophy. TPLP 12, 1-2, 219–252.

Hoder, K. and Bjørner, N. 2012. Generalized property directed reachability. In SAT.
Proceedings, A. Cimatti and R. Sebastiani, Eds. LNCS, vol. 7317. Springer, 157–171.

Hojjat, H., Konecný, F., Garnier, F., Iosif, R., Kuncak, V., and Rümmer, P.
2012. A verification toolkit for numerical transition systems - tool paper. In FM,
D. Giannakopoulou and D. Méry, Eds. LNCS, vol. 7436. Springer, 247–251.

Jaffar, J., Maher, M., Marriott, K., and Stuckey, P. 1998. The semantics of
constraint logic programs. Journal of Logic Programming 37, 1–3, 1–46.

Jones, N., Gomard, C., and Sestoft, P. 1993. Partial Evaluation and Automatic
Software Generation. Prentice Hall.

Kafle, B. and Gallagher, J. P. 2017. Horn clause verification with convex polyhe-
dral abstraction and tree automata-based refinement. Computer Languages, Systems &
Structures 47, 2–18.

Kafle, B., Gallagher, J. P., and Ganty, P. 2016. Solving non-linear horn clauses
using a linear horn clause solver. In HCVS, J. P. Gallagher and P. Rümmer, Eds.
EPTCS, vol. 219. 33–48.

Kafle, B., Gallagher, J. P., and Morales, J. F. 2016. RAHFT: A Tool for Ver-
ifying Horn Clauses Using Abstract Interpretation and Finite Tree Automata. In
CAV, S. Chaudhuri and A. Farzan, Eds. Lecture Notes in Computer Science, vol. 9779.
Springer, 261–268.

McMillan, K. L. and Rybalchenko, A. 2013. Solving constrained Horn clauses using
interpolation. Tech. rep., Microsoft Research.

Mordvinov, D. and Fedyukovich, G. 2017. Synchronizing constrained horn clauses.
In LPAR-21. 21st International Conference on Logic for Programming, Artificial Intel-
ligence and Reasoning, T. Eiter and D. Sands, Eds. EPiC Series in Computing, vol. 46.
EasyChair, 338–355.

Nielson, H. R. and Nielson, F. 1992. Semantics with applications - a formal introduc-
tion. Wiley professional computing. Wiley.

Peralta, J., Gallagher, J. P., and Sağlam, H. 1998. Analysis of imperative programs
through analysis of constraint logic programs. In SAS, G. Levi, Ed. Springer-Verlag
LNCS, vol. 1503. 246–261.

Reps, T. W., Turetsky, E., and Prabhu, P. 2016. Newtonian program analysis via
tensor product. In POPL, R. Bod́ık and R. Majumdar, Eds. ACM, 663–677.

Rümmer, P., Hojjat, H., and Kuncak, V. 2013. Disjunctive interpolants for Horn-
clause verification. See Sharygina and Veith (2013), 347–363.

Sharygina, N. and Veith, H., Eds. 2013. CAV. LNCS, vol. 8044. Springer.

	Introduction
	Preliminaries and formal background
	Tree dimension and CHCs
	Programs as CHCs and their dimension
	Construction of dimension instrumented set of clauses
	Verification of dimension properties
	Derivation of dimension-bounded CHCs by partial evaluation

	Verification Algorithms
	Decomposition by dimension of verification problem
	Verification by successive iteration of bounded dimension CHCs

	Experimental results
	Verification of safety properties

	Discussion and Related Work
	Conclusion and Future Work
	References

